cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A237424 Numbers of the form (10^a + 10^b + 1)/3.

Original entry on oeis.org

1, 4, 7, 34, 37, 67, 334, 337, 367, 667, 3334, 3337, 3367, 3667, 6667, 33334, 33337, 33367, 33667, 36667, 66667, 333334, 333337, 333367, 333667, 336667, 366667, 666667, 3333334, 3333337, 3333367, 3333667, 3336667
Offset: 1

Views

Author

Ahmad J. Masad, Feb 07 2014

Keywords

Comments

Has the property that the product of any two (not necessarily distinct) terms has digits in nondecreasing order.
Conjecture: This sequence is in a sense the maximally dense sequence with this nondecreasing products property. That is, it appears that every maximal sequence is either (i) A237424, (ii) a finite set of "extra" terms plus A237424 restricted to b=0 (which is A093137), or (iii) a finite set of "extra" terms plus A237424 restricted to a=b (which is A067275). (There might be one more case, not yet identified.) - David Applegate, Feb 12 2014
See A254143 and link for products a(i)*a(j) in natural order. - Reinhard Zumkeller, Jan 28 2015

Crossrefs

Programs

  • Haskell
    a237424 = flip div 3 . (+ 1) . a052216
    -- Reinhard Zumkeller, Jan 28 2015
    
  • Magma
    A052216:=[10^(n-1) + 10^(k-1): k in [1..n], n in [1..100]];
    A237424:= func< n | (A052216[n]+1)/3 >;
    [A237424(n): n in [1..100]]; // G. C. Greubel, Feb 22 2024
    
  • Mathematica
    Union@ Flatten@ Table[(10^a + 10^b + 1)/3, {a, 0, 8}, {b, a, 8}] (* Robert G. Wilson v, Jan 26 2015 *)
    (10^#[[1]]+10^#[[2]]+1)/3&/@Tuples[Range[0,8],2]//Union (* Harvey P. Dale, May 28 2019 *)
  • PARI
    list(lim)=my(v=List(),a,t); while(1, for(b=0,a, t=(10^a+10^b+1)/3; if(t>lim, return(Set(v))); listput(v, t)); a++) \\ Charles R Greathouse IV, May 13 2015
    
  • Python
    from math import isqrt
    def A237424(n): return (10**(a:=(k:=isqrt(m:=n<<1))+(m>k*(k+1))-1)+10**(n-1-(a*(a+1)>>1))+1)//3 # Chai Wah Wu, Apr 08 2025
  • SageMath
    A052216=flatten([[10^(n-1) + 10^(k-1) for k in range(1,n+1)] for n in range(1,101)])
    def A237424(n): return (A052216[n-1]+1)//3
    [A237424(n) for n in range(1,101)] # G. C. Greubel, Feb 22 2024
    

Formula

a(n) = (A052216(n) + 1)/3. - Reinhard Zumkeller, Jan 28 2015

Extensions

Edited by David Applegate, Feb 07 2014

A028820 Squares with digits in nondecreasing order.

Original entry on oeis.org

0, 1, 4, 9, 16, 25, 36, 49, 144, 169, 225, 256, 289, 1156, 1225, 1369, 1444, 4489, 6889, 11236, 11449, 13456, 13689, 27889, 33489, 111556, 112225, 113569, 134689, 146689, 344569, 444889, 2666689, 2778889, 11115556, 11122225, 11135569
Offset: 1

Views

Author

Keywords

Comments

Number of terms less than 10^k, beginning with k=0: 1, 4, 8, 13, 19, 25, 32, 34, 42, 43, 50, 53, 61, 62, 71, 72, 82, 83, 94, 95, …, .
Like all squares the ending digits can be 0, 1, 4, 5, 6 or 9. Here is the tally of the list of terms < 10^19: {0, 1}, {1, 1}, {4, 4}, {5, 10}, {6, 13}, {9, 66}. Robert G. Wilson v, Jan 01 2014

Crossrefs

Intersection of A000290 and A009994.

Programs

  • Mathematica
    Select[Range[0,4000]^2,Min[Differences[IntegerDigits[#]]]>-1&] (* Harvey P. Dale, Dec 31 2013 *)
    Select[Range[0,10^4]^2,LessEqual@@IntegerDigits[#]&] (* Ray Chandler, Jan 06 2014 *)
  • PARI
    mono(n)=n=eval(Vec(Str(n)));for(i=2,#n,if(n[i]Charles R Greathouse IV, Aug 22 2011
    
  • Python
    from itertools import combinations_with_replacement
    from gmpy2 import is_square
    A028820_list = [0] + [n for n in (int(''.join(i)) for l in range(1,11) for i in combinations_with_replacement('123456789',l)) if is_square(n)] # Chai Wah Wu, Dec 07 2015

Formula

a(n) = A028819(n)^2. - Ray Chandler, Jan 06 2014

Extensions

Definition edited by Zak Seidov, Dec 31 2013

A234841 Integers n such that digits in n and n^2 are in nondecreasing order.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 12, 13, 15, 16, 17, 34, 35, 37, 38, 67, 116, 117, 167, 334, 335, 337, 367, 667, 1667, 3334, 3335, 3337, 3367, 3667, 6667, 16667, 33334, 33335, 33337, 33367, 33667, 36667, 66667, 166667, 333334, 333335, 333337, 333367, 333667, 336667
Offset: 1

Views

Author

Zak Seidov, Dec 31 2013

Keywords

Crossrefs

Intersection of A009994 and A028819.

Programs

  • Mathematica
    Select[Range[0,500000],LessEqual@@IntegerDigits[#]&&LessEqual@@IntegerDigits[#^2]&](* Ray Chandler, Jan 02 2014 *)
Showing 1-3 of 3 results.