cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A028897 If n = Sum c_i 10^i then a(n) = Sum c_i 2^i.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 4
Offset: 0

Views

Author

Keywords

Comments

For n<100, this is the same result as "If n = Sum c_i 10^i then a(n) = Sum c_i (i+1)". - Henry Bottomley, Apr 20 2001
n_2 in the notation of A122618.
Left inverse of A007088 (binary numbers), cf. formula from Karttunen. - M. F. Hasler, Jun 13 2023

Crossrefs

Differs from A081594 and A244158 for the first time at n = 100, which here is a(100) = 4.
See A322000 for integers ordered according to the value of a(n).

Programs

  • Haskell
    a028897 0 = 0
    a028897 n = 2 * a028897 n' + d where (n', d) = divMod n 10
    -- Reinhard Zumkeller, Nov 06 2014
  • Mathematica
    a[n_ /; n < 10] := n; a[n_] := a[n] = If[Mod[n, 10] != 0, a[n-1] + 1, 2*a[n/10]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Apr 02 2016 *)
  • PARI
    a(n)=if(n<1,0,if(n%10,a(n-1)+1,2*a(n/10)))
    
  • PARI
    A028897(n)=fromdigits(digits(n),2) \\ M. F. Hasler, Feb 14 2019
    (MIT/GNU Scheme) (define (A028897 n) (let loop ((z 0) (i 0) (n n)) (if (zero? n) z (loop (+ z (* (modulo n 10) (expt 2 i))) (1+ i) (floor->exact (/ n 10)))))) ;; Antti Karttunen, Jun 22 2014
    

Formula

a(n) = 2*a(floor(n/10)) + (n mod 10). - Henry Bottomley, Apr 20 2001
a(0) = 0, a(n) = 2*a(n/10) if n == 0 (mod 10), a(n) = a(n-1)+1 otherwise. - Benoit Cloitre, Dec 21 2002
For all n, a(A007088(n)) = n. - Antti Karttunen, Jun 22 2014

Extensions

More terms from Erich Friedman.
Terms up to n = 100 added by Antti Karttunen, Jun 22 2014