cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A322000 Nonnegative integers, sorted by increasing value of A028897(n) = Sum d[i]*2^i for n = Sum d[i]*10^i, then value of n.

Original entry on oeis.org

0, 1, 2, 10, 3, 11, 4, 12, 20, 100, 5, 13, 21, 101, 6, 14, 22, 30, 102, 110, 7, 15, 23, 31, 103, 111, 8, 16, 24, 32, 40, 104, 112, 120, 200, 1000, 9, 17, 25, 33, 41, 105, 113, 121, 201, 1001, 18, 26, 34, 42, 50, 106, 114, 122, 130, 202, 210, 1002, 1010, 19, 27
Offset: 0

Views

Author

M. F. Hasler, Feb 13 2019

Keywords

Comments

A028897(n) is the result of using the decimal digits of n, but weighting their position as in base 2. For sake of brevity we refer to this as the b-value of n in the sequel. This idea is found on the website given in links under the name "decibinary numbers".
The b-values increment by 1 at indices (of "records") 1, 2, 4, 6, 10, 14, 20, 26, 36, ... Prefixing an initial 0, the gaps between these, equal to the number of occurrences of a given b-value (0, 1, 2, ...), are 1, 1, 2, 2, 4, 4, 6, 6, 10, 10, 13, 13, ... = A072170(n,10). In this sequence each of (1, 2, 4, 6, 10, 13, 18, ...) is repeated twice.

Examples

			The first terms of the sequence are as follows: (b = A028897)
  n | 0 | 1 | 2 | 10 | 3 | 11 | 4 | 12 | 20 | 100 | 5 | 13 | 21 | 101 | ...
----+---+---+---+----+---+----+---+----+----+-----+---+----+----+-----+-----
b(n)| 0 | 1 | 2 |  2 | 3 |  3 | 4 |  4 |  4 |  4  | 5 |  5 |  5 |  5  | ...
For example, b(345) = 3*2^2 + 4*2 + 5 = 25.
		

Crossrefs

Cf. A028897, A072170 (see comments).

Programs

  • Maple
    N:= 30: # for all numbers with A028897(n) <= N
    L:= {seq([i,i],i=0..9)}: Agenda:= {seq([i,i],i=1..9)}:
    extend:= proc(p) local x;  op(select(t -> t[2]<=N, [seq([10*p[1]+x, 2*p[2]+x],x=0..9)])); end proc:
    sorter:= proc(p1,p2) if p1[2] <> p2[2] then p1[2] < p2[2] else p1[1] < p2[1] fi end proc:
    while Agenda <> {} do
      Agenda:= map(extend, Agenda);
      L:= L union Agenda;
    od:
    L:= sort( convert(L,list),sorter):
    map(t -> t[1], L); # Robert Israel, Feb 24 2019
  • PARI
    my(A028897(n)=fromdigits(digits(n),2),S=[]);for(k=1,2^10,(t=A028897(k))>9||S=setunion(S,[[t,k]]));apply(t->t[2],S)

A322003 Indices where A028897(A322000(n)) increases. Partial sums of A072170(n,10).

Original entry on oeis.org

0, 1, 2, 4, 6, 10, 14, 20, 26, 36, 46, 59, 72, 90, 108, 130, 152, 182, 212, 248, 284, 329, 374, 426, 478, 542, 606, 678, 750, 834, 918, 1011, 1104, 1214, 1324, 1446, 1568, 1708, 1848, 2002, 2156, 2333, 2510, 2702, 2894, 3108, 3322, 3552, 3782, 4040, 4298, 4575, 4852, 5156, 5460, 5784, 6108, 6464, 6820, 7196, 7572, 7977, 8382
Offset: 0

Views

Author

M. F. Hasler, Feb 19 2019

Keywords

Comments

A322000 lists all nonnegative integers m ordered by increasing "decibinary" value N = A028897(m) = Sum d[i]*2^i where d[i] are the decimal digits of m. A072170(N,10) says in how many ways a given N can be written in that way. Accordingly, this is also the length of runs of identical values A028897(A322000(k)), and the partial sums, listed here as a(k), give the indices of A322000 where the decibinary value of the terms go up by one.
We have a(k) <= A000123(k-1) with equality for 1 <= k <= 10: the first differences of A000123 give back that sequence with terms duplicated, and this is the limiting column of A072170.

Crossrefs

Programs

  • PARI
    A322003(n)=sum(k=0,n-1,A072170(k,10))
    A322003_vec=vector(99,k,s=if(k>1,s)+A072170(k-1,10)) \\ more efficient for computing a large vector. Excludes the initial a(0) = 0 to have 1-based indices of the vector match the indices of the components a(n), n >= 1.

Formula

a(n) = Sum_{0 <= k < n} A072170(k,10).

A007088 The binary numbers (or binary words, or binary vectors, or binary expansion of n): numbers written in base 2.

Original entry on oeis.org

0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111, 10000, 10001, 10010, 10011, 10100, 10101, 10110, 10111, 11000, 11001, 11010, 11011, 11100, 11101, 11110, 11111, 100000, 100001, 100010, 100011, 100100, 100101, 100110, 100111
Offset: 0

Views

Author

Keywords

Comments

List of binary numbers. (This comment is to assist people searching for that particular phrase. - N. J. A. Sloane, Apr 08 2016)
Or, numbers that are sums of distinct powers of 10.
Or, numbers having only digits 0 and 1 in their decimal representation.
Complement of A136399; A064770(a(n)) = a(n). - Reinhard Zumkeller, Dec 30 2007
From Rick L. Shepherd, Jun 25 2009: (Start)
Nonnegative integers with no decimal digit > 1.
Thus nonnegative integers n in base 10 such that kn can be calculated by normal addition (i.e., n + n + ... + n, with k n's (but not necessarily k + k + ... + k, with n k's)) or multiplication without requiring any carry operations for 0 <= k <= 9. (End)
For n > 1: A257773(a(n)) = 10, numbers that are Belgian-k for k=0..9. - Reinhard Zumkeller, May 08 2015
For any integer n>=0, find the binary representation and then interpret as decimal representation giving a(n). - Michael Somos, Nov 15 2015
N is in this sequence iff A007953(N) = A101337(N). A028897 is a left inverse. - M. F. Hasler, Nov 18 2019
For n > 0, numbers whose largest decimal digit is 1. - Stefano Spezia, Nov 15 2023

Examples

			a(6)=110 because (1/2)*((1-(-1)^6)*10^0 + (1-(-1)^3)*10^1 + (1-(-1)^1)*10^2) = 10 + 100.
G.f. = x + 10*x^2 + 11*x^3 + 100*x^4 + 101*x^5 + 110*x^6 + 111*x^7 + 1000*x^8 + ...
.
  000    The numbers < 2^n can be regarded as vectors with
  001    a fixed length n if padded with zeros on the left
  010    side. This represents the n-fold Cartesian product
  011    over the set {0, 1}. In the example on the left,
  100    n = 3. (See also the second Python program.)
  101    Binary vectors in this format can also be seen as a
  110    representation of the subsets of a set with n elements.
  111    - _Peter Luschny_, Jan 22 2024
		

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 21.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §2.8 Binary, Octal, Hexadecimal, p. 64.
  • Manfred R. Schroeder, "Fractals, Chaos, Power Laws", W. H. Freeman, 1991, p. 383.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

The basic sequences concerning the binary expansion of n are this one, A000120 (Hammingweight: sum of bits), A000788 (partial sums of A000120), A000069 (A000120 is odd), A001969 (A000120 is even), A023416 (number of bits 0), A059015 (partial sums). Bisections A099820 and A099821.
Cf. A028897 (convert binary to decimal).

Programs

  • Haskell
    a007088 0 = 0
    a007088 n = 10 * a007088 n' + m where (n',m) = divMod n 2
    -- Reinhard Zumkeller, Jan 10 2012
    
  • Maple
    A007088 := n-> convert(n, binary): seq(A007088(n), n=0..50); # R. J. Mathar, Aug 11 2009
  • Mathematica
    Table[ FromDigits[ IntegerDigits[n, 2]], {n, 0, 39}]
    Table[Sum[ (Floor[( Mod[f/2 ^n, 2])])*(10^n) , {n, 0, Floor[Log[2, f]]}], {f, 1, 100}] (* José de Jesús Camacho Medina, Jul 24 2014 *)
    FromDigits/@Tuples[{1,0},6]//Sort (* Harvey P. Dale, Aug 10 2017 *)
  • PARI
    {a(n) = subst( Pol( binary(n)), x, 10)}; /* Michael Somos, Jun 07 2002 */
    
  • PARI
    {a(n) = if( n<=0, 0, n%2 + 10*a(n\2))}; /* Michael Somos, Jun 07 2002 */
    
  • PARI
    a(n)=fromdigits(binary(n),10) \\ Charles R Greathouse IV, Apr 08 2015
    
  • Python
    def a(n): return int(bin(n)[2:])
    print([a(n) for n in range(40)]) # Michael S. Branicky, Jan 10 2021
    
  • Python
    from itertools import product
    n = 4
    for p in product([0, 1], repeat=n): print(''.join(str(x) for x in p))
    # Peter Luschny, Jan 22 2024

Formula

a(n) = Sum_{i=0..m} d(i)*10^i, where Sum_{i=0..m} d(i)*2^i is the base 2 representation of n.
a(n) = (1/2)*Sum_{i>=0} (1-(-1)^floor(n/2^i))*10^i. - Benoit Cloitre, Nov 20 2001
a(n) = A097256(n)/9.
a(2n) = 10*a(n), a(2n+1) = a(2n)+1.
G.f.: 1/(1-x) * Sum_{k>=0} 10^k * x^(2^k)/(1+x^(2^k)) - for sequence as decimal integers. - Franklin T. Adams-Watters, Jun 16 2006
a(A000290(n)) = A001737(n). - Reinhard Zumkeller, Apr 25 2009
a(n) = Sum_{k>=0} A030308(n,k)*10^k. - Philippe Deléham, Oct 19 2011
For n > 0: A054055(a(n)) = 1. - Reinhard Zumkeller, Apr 25 2012
a(n) = Sum_{k=0..floor(log_2(n))} floor((Mod(n/2^k, 2)))*(10^k). - José de Jesús Camacho Medina, Jul 24 2014

A010062 a(0)=1; thereafter a(n+1) = a(n) + number of 1's in binary representation of a(n).

Original entry on oeis.org

1, 2, 3, 5, 7, 10, 12, 14, 17, 19, 22, 25, 28, 31, 36, 38, 41, 44, 47, 52, 55, 60, 64, 65, 67, 70, 73, 76, 79, 84, 87, 92, 96, 98, 101, 105, 109, 114, 118, 123, 129, 131, 134, 137, 140, 143, 148, 151, 156, 160, 162, 165, 169, 173, 178, 182, 187, 193, 196, 199, 204
Offset: 0

Views

Author

Leonid Broukhis, Mar 15 1996

Keywords

Comments

Sequence A230297 (and A157845 without initial term) converted from binary to decimal, cf. formula. - M. F. Hasler, Nov 18 2019

Examples

			a(7) = 14 because a(6) = 12, which is 1100 in binary (having 2 on bits), and 12 + 2 = 14.
a(8) = 17 because a(7) = 14, which is 1110 in binary (having 3 on bits), and 14 + 3 = 17.
		

Crossrefs

First row of A228083.
For the base-10 analog see A004207.
Cf. A000120, A010061, A092391, A229167, A096303, A229743, A229744, A230297 (this sequence written in binary), A230298 (read mod 2).
See A230088 for partial sums.
Equals A028897 o A230297 = A028897 o A157845 (up to offset); see also A007088.

Programs

Formula

a(n) = (n/2)*log n + O(n*sqrt(log n * loglog n)), where log means log_2. In particular, a(n) ~ (n/2)*log n. [Stolarsky]
a(n + 1) = A092391(a(n)) = a(n) + A000120(a(n)). - Reinhard Zumkeller, May 27 2012, May 08 2004; corrected thanks to a notice by Lambert Herrgesell
a(n) = A028897(A230297(n)) = A028897(A157845(n+1)). - M. F. Hasler, Nov 18 2019

Extensions

More terms from Benoit Cloitre, Jun 02 2002
Stolarsky reference from Matthew C. Russell, Oct 08 2013

A122618 a(n) = n_n, where "N_b" denotes "N read in base b": if N = Sum c_i 10^i then N_b = Sum c_i b^i.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 40, 43, 46, 49, 52, 55, 58, 61, 64, 67, 90, 94, 98, 102, 106, 110, 114, 118, 122, 126, 160, 165, 170, 175, 180, 185, 190, 195, 200, 205, 250, 256, 262, 268, 274, 280, 286, 292, 298, 304, 360, 367, 374, 381, 388
Offset: 1

Views

Author

N. J. A. Sloane, Sep 21 2006

Keywords

Comments

The definition applies even if b < 10. Examples: 23_45 = 2*45 + 3 = 93, 23_2 = 2*2 + 3 = 7.

References

  • David Applegate, Marc LeBrun and N. J. A. Sloane, Descending Dungeons and Iterated Base-Changing, in "The Mathematics of Preference, Choice and Order: Essays in Honor of Peter Fishburn", edited by Steven Brams, William V. Gehrlein and Fred S. Roberts, Springer, 2009, pp. 393-402.

Crossrefs

Differs from A083292 starting at n=100.
Cf. A028897 (n_2), A122640 (2n_2).

Programs

  • Maple
    A122618 := proc(n)
          local dgs;
          dgs := convert(n,base,10) ;
        add(op(i,dgs)*n^(i-1),i=1..nops(dgs)) ;
    end proc: # R. J. Mathar, May 06 2019
  • Mathematica
    f[n_] := FromDigits[ IntegerDigits@n, n]; Array[f, 64] (* Robert G. Wilson v, Sep 27 2006 *)
  • PARI
    A122618(n,d=digits(n))=d*vectorv(#d,i,n^(#d-i)) \\ M. F. Hasler, Apr 22 2015

A244158 If n = Sum c_i * 10^i then a(n) = Sum c_i * Cat(i+1), where Cat(k) = A000108(k).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 5
Offset: 0

Views

Author

Antti Karttunen, Jun 22 2014

Keywords

Comments

This sequence converts any number from various "Catalan Base number systems" (when represented as decimal numbers) back to the integer the numeral represents: e.g. we have a(A014418(n)) = n and a(A244159(n)) = n (except for the latter this is eventually broken by the shortcomings of the decimal representation used, while for the former it works for all n, because no digits larger than 3 will ever appear in the terms of A014418).
A197433 is similar, but replaces 2^k with A000108(k+1) in binary expansion of n.
For 1- and 2-digit numbers the same as A156230. - R. J. Mathar, Jun 27 2014

Crossrefs

Differs from A028897 and A081594 for the first time at n=100, which here is a(100) = 5.

Programs

  • Maple
    A244158 := proc(n)
        local dgs,k ;
        dgs := convert(n,base,10) ;
        add( op(k,dgs)*A000108(k),k=1..nops(dgs)) ;
    end proc: # R. J. Mathar, Jan 31 2015

A081594 Let n = 10x + y where 0 <= y <= 9, x >= 0. Then a(n) = 2x+y.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 20
Offset: 0

Views

Author

N. J. A. Sloane, Apr 22 2003

Keywords

Crossrefs

Cf. A081502. Differs from A028897, A156230 and A244158 for the first time at n=100, which here is a(100) = 20.

Programs

  • Magma
    [(n+4*y)/5 where y is n mod 10: n in [0..100]]; // Bruno Berselli, Jun 24 2014
    
  • Maple
    A081594:=n->n-8*floor(n/10); seq(A081594(n), n=0..100); # Wesley Ivan Hurt, Jun 25 2014
  • Mathematica
    CoefficientList[Series[-x (7 x^9 - x^8 - x^7 - x^6 - x^5 - x^4 - x^3 - x^2 - x - 1)/((x - 1)^2 (x + 1) (x^4 - x^3 + x^2 - x+1) (x^4 + x^3 + x^2 + x + 1)), {x, 0, 150}], x] (* Vincenzo Librandi, Jun 25 2014 *)
    LinearRecurrence[{1,0,0,0,0,0,0,0,0,1,-1},{0,1,2,3,4,5,6,7,8,9,2},110] (* or *) Table[Range[n,n+9],{n,0,26,2}]//Flatten (* Harvey P. Dale, Jul 22 2021 *)
  • PARI
    my(n, x, y); vector(200, n, y=(n-1)%10; x=(n-1-y)\10; 2*x+y) \\ Colin Barker, Jun 24 2014
    
  • Sage
    [n-8*floor(n/10) for n in (0..100)] # Bruno Berselli, Jun 24 2014

Formula

a(n) = (2 * floor(n/10)) + (n modulo 10). - Antti Karttunen, Jun 22 2014
G.f.: -x*(7*x^9 -x^8 -x^7 -x^6 -x^5 -x^4 -x^3 -x^2 -x -1) / ((x -1)^2*(x +1)*(x^4 -x^3 +x^2 -x +1)*(x^4 +x^3 +x^2 +x +1)). - Colin Barker, Jun 23 2014
a(n) = n - 8*floor(n/10). [Bruno Berselli, Jun 24 2014]

Extensions

Terms up to n=100 added by Antti Karttunen, Jun 22 2014
G.f. revised by Vincenzo Librandi, Jun 25 2014

A230297 a(n) = A010062(n) written in binary: a(n+1) = a(n) + hammingweight(a(n)) in binary.

Original entry on oeis.org

1, 10, 11, 101, 111, 1010, 1100, 1110, 10001, 10011, 10110, 11001, 11100, 11111, 100100, 100110, 101001, 101100, 101111, 110100, 110111, 111100, 1000000, 1000001, 1000011, 1000110, 1001001, 1001100, 1001111, 1010100, 1010111, 1011100, 1100000, 1100010, 1100101, 1101001, 1101101, 1110010, 1110110, 1111011, 10000001, 10000011
Offset: 0

Views

Author

N. J. A. Sloane, Oct 17 2013

Keywords

Comments

Is there any way to tell by looking at a binary number whether or not it is a term of this sequence?

Crossrefs

Cf. A010062.
Essentially the same as A157845.
Cf. A004207 (base-10 analog); A007088 (n in binary), A010062 (this written in base 10), A000120 (Hammingweight), A092391 (A000120(n) + n), A028897 (convert binary to decimal).

Programs

  • Mathematica
    s[0] = 1; s[n_] := s[n] = s[n-1] + DigitCount[s[n-1], 2, 1]; Table[FromDigits[IntegerDigits[s[n], 2]], {n, 0, 50}] (* Amiram Eldar, Jul 28 2023 *)
  • PARI
    (A230297(n)=A007088(A010062(n))); A230297_vec(N)={vector(N,i, if(i>1, A007088(N+=hammingweight(N)), N=1))} \\ M. F. Hasler, Nov 18 2019

Formula

a(n) = A157845(n+1) = A007088(A010062(n)) = A007088(A092391(A028897(a(n-1)))). - M. F. Hasler, Nov 18 2019

A157845 a(0) = 1, a(n) = sum of binary digits of all prior terms, expressed in binary.

Original entry on oeis.org

1, 1, 10, 11, 101, 111, 1010, 1100, 1110, 10001, 10011, 10110, 11001, 11100, 11111, 100100, 100110, 101001, 101100, 101111, 110100, 110111, 111100, 1000000, 1000001, 1000011, 1000110, 1001001, 1001100, 1001111, 1010100, 1010111, 1011100, 1100000, 1100010
Offset: 0

Views

Author

Oliver K. Seet, Mar 07 2009

Keywords

Comments

Equals A230297 = A010062 converted from decimal to binary, prefixed by another initial 1. - M. F. Hasler, Nov 18 2019

Crossrefs

Cf. A004207 (base-10 analog); A007088 (n in binary), A010062 (this written in base 10), A000120 (Hammingweight), A092391 (A000120(n) + n), A028897 (convert binary to decimal).

Programs

  • Maple
    b:= proc(n) option remember; `if`(n<2, 1, b(n-1)+
          add(i, i=convert(a(n-1), base, 10)))
        end:
    a:= n-> convert(b(n), binary):
    seq(a(n), n=0..44);  # Alois P. Heinz, Nov 18 2019
  • Mathematica
    s[0] = s[1] = 1; s[n_] := s[n] = s[n-1] + DigitCount[s[n-1], 2, 1]; Table[FromDigits[IntegerDigits[s[n], 2]], {n, 0, 50}] (* Amiram Eldar, Jul 28 2023 *)
  • PARI
    lista(nn) = {my(s = 1); my(t = 1); print1(t, ", "); for (i=1, nn, sb = binary(s); t = subst(Pol(sb), x, 10); print1(t, ", "); s += hammingweight(sb););}
    
  • PARI
    apply( A157845(n)=fromdigits(binary(A010062(n-!!n))), [0..40]) \\ M. F. Hasler, Nov 18 2019

Formula

a(n) = A230297(n-1) = A007088(A010062(n-1)) = A007088(A092391(A028897(a(n-1)))) for n > 0. - M. F. Hasler, Nov 18 2019

Extensions

a(11) corrected and extended by R. J. Mathar, Mar 12 2009
More terms from Michel Marcus, Apr 19 2014

A222813 Numbers whose binary representation is palindromic and in which all runs of 0's and 1's have length at least 2.

Original entry on oeis.org

3, 7, 15, 31, 51, 63, 99, 127, 195, 231, 255, 387, 455, 511, 771, 819, 903, 975, 1023, 1539, 1651, 1799, 1935, 2047, 3075, 3171, 3315, 3591, 3687, 3855, 3999, 4095, 6147, 6371, 6643, 7175, 7399, 7695, 7967, 8191, 12291, 12483, 12771, 13107, 13299, 14343, 14535, 14823, 15375, 15567, 15903, 16191, 16383, 24579
Offset: 1

Views

Author

N. J. A. Sloane, Mar 11 2013

Keywords

Comments

These are the decimal representations of A061851 read as base-2 numbers.
The terms with an odd number L = 2k-1 of bits, i.e., 2^(L-1) < a(n) < 2^L, are given by the terms of A033015 with length k, shifted k-1 digits to the left and 'OR'ed with the binary reversal of the term. Terms with an even number L = 2k of digits are given as m*2^k + (binary reversal of m) where m runs over the k-bit terms from A033015 and the k-1 bit terms with the last bit negated appended). This explains the FORMULA for the number of terms of given size. - M. F. Hasler, Oct 17 2022

Examples

			51 (base 10) = 110011 (base 2), which is a palindrome and has three runs all of length 2.
		

Crossrefs

Cf. A061851.
Cf. A006995 (binary palindromes), A033015 (no isolated binary digit), A028897 ("rebase" 10 -> 2).

Programs

  • Mathematica
    brpalQ[n_]:=Module[{idn2=IntegerDigits[n,2]},idn2==Reverse[idn2] && Min[ Length/@ Split[idn2]]>1]; Select[Range[25000],brpalQ] (* Harvey P. Dale, May 21 2014 *)
  • PARI
    is(n)=is_A033015(n)&&Vecrev(n=binary(n))==n \\ M. F. Hasler, Oct 06 2022
    
  • PARI
    {A222813_row(n, s=A033015_row(n\/2))=apply(A030101, if(n%2, s\2, n>2, s=setunion([k*2+1-k%2|k<-A033015_row(n\2-1)],s), s=[1]))+s<<(n\2)} \\ Terms with n bits, i.e. between 2^(n-1) and 2^n. - M. F. Hasler, Oct 17 2022

Formula

From M. F. Hasler, Oct 06 2022: (Start)
Intersection of A006995 and A033015: binary palindromes with no isolated digit.
There are A000045(A004526(k)) = Fibonacci(floor(k/2)) terms between 2^(k-1) and 2^k.
a(n) = A028897(A061851(n)), where A028897 = convert binary to decimal. (End)
Showing 1-10 of 16 results. Next