A028940
a(n) = numerator of the X-coordinate of n*P where P is the generator [0,0] for rational points on the curve y^2 + y = x^3 - x.
Original entry on oeis.org
0, 1, -1, 2, 1, 6, -5, 21, -20, 161, 116, 1357, -3741, 18526, 8385, 480106, -239785, 12551561, -59997896, 683916417, 1849037896, 51678803961, -270896443865, 4881674119706, -16683000076735, 997454379905326
Offset: 1
4P = P[4] = [2, -3].
P[1] to P[16] are [0, 0], [1, 0], [-1, -1], [2, -3], [1/4, -5/8], [6, 14], [-5/9, 8/27], [21/25, -69/125], [-20/49, -435/343], [161/16, -2065/64], [116/529, -3612/12167], [1357/841, 28888/24389], [-3741/3481, -43355/205379], [18526/16641, -2616119/2146689], [8385/98596, -28076979/30959144], [480106/4225, 332513754/274625]. - _N. J. A. Sloane_, Jan 27 2022
- A. W. Knapp, Elliptic Curves, Princeton 1992, p. 77.
-
\\ from N. J. A. Sloane, Jan 27 2022. To get the first 40 points P[n].
\\ define curve E
E = ellinit([0,0,1,-1,0]) \\ y^2+y = x^3-x
P = vector(100)
P[1] = [0,0]
for(n=2, 40, P[n] = elladd(E, P[1], P[n-1]))
P
A028943
Denominator of y coordinate of n*P where P is the generator [0,0] for rational points on curve y^2+y = x^3-x.
Original entry on oeis.org
1, 1, 1, 1, 8, 1, 27, 125, 343, 64, 12167, 24389, 205379, 2146689, 30959144, 274625, 3574558889, 50202571769, 553185473329, 4302115807744, 578280195945297, 1469451780501769, 238670664494938073, 13528653463047586625
Offset: 1
- A. W. Knapp, Elliptic Curves, Princeton 1992, p. 77.
A028941
Denominator of X-coordinate of n*P where P is the generator [0,0] for rational points on curve y^2+y = x^3-x.
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 9, 25, 49, 16, 529, 841, 3481, 16641, 98596, 4225, 2337841, 13608721, 67387681, 264517696, 6941055969, 12925188721, 384768368209, 5677664356225, 61935294530404, 49020596163841, 16063784753682169
Offset: 1
- G. Everest, A. J. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences: Examples and Applications, AMS Monographs, 2003
- A. W. Knapp, Elliptic Curves, Princeton 1992, p. 77.
-
nxt[{a_,b_,c_,d_,e_,f_}]:={b,c,d,e,f,((c*2e)-f*b+2d^2)/a}; NestList[nxt,{1,1,1,1,4,1},30][[;;,1]] (* Harvey P. Dale, Dec 26 2024 *)
-
- see A028940.
A028938
Negative of numerator of y-coordinate of (2n)*P where P is generator for rational points on curve y^2 + y = x^3 - x.
Original entry on oeis.org
0, 3, -14, 69, 2065, -28888, 2616119, -332513754, 8280062505, 18784454671297, -10663732503571536, 8938035295591025771, 31636113722016288336230, -41974401721854929811774227, 754388827236735824355996347601
Offset: 1
A028934
Negative of numerator of y-coordinate of (2n+1)*P where P is the generator for rational points on the curve y^2 + y = x^3 - x.
Original entry on oeis.org
0, 1, 5, -8, 435, 3612, 43355, 28076979, -331948240, 641260644409, 318128427505160, -66316334575107447, 588310630753491921045, 435912379274109872312968, 2181616293371330311419201915
Offset: 0
3P = (-1, -1). 5P = (1/4, -5/8). 7P = (-5/9, 8/27).
-
a[ n_] := If[n == 0, 0, -Numerator[ #[[3]]/#[[1]]^3 & @ Nest[Function[z, Module[{w, x, y}, {w, x, y} = z; {w x, y^2 - x^3, -y (y^2 - x^3) - (w x)^3}]], {1, 1, 0}, 2 n - 1]]]; (* Michael Somos, Apr 13 2020 *)
-
{a(n) = -numerator(ellmul(ellinit([0, 0, 1, -1, 0]), [0, 0], 2*n+1)[2])}; /* Michael Somos, Apr 13 2020 */
A278314
a(n) = -c(n-1) * c(n-2) * c(n+3) where c(n) = A006769(n).
Original entry on oeis.org
0, 0, 1, -3, -5, -14, -8, 69, -435, 2065, 3612, 28888, -43355, -2616119, 28076979, -332513754, 331948240, 8280062505, 641260644409, 18784454671297, -318128427505160, 10663732503571536, -66316334575107447, -8938035295591025771, -588310630753491921045
Offset: 1
G.f. = x^3 - 3*x^4 - 5*x^5 - 14*x^6 - 8*x^7 + 69*x^8 - 435*x^9 + ...
-
{a(n) = my(m, an); if( n>0, m = n; an = vector( max(12, m), i, if( i<13, [0, 0, 1, -3, -5, -14, -8, 69, -435, 2065, 3612, 28888][i], 0)), m = 1-n; an = vector( max(12, m), i, if( i<13, [1, 1, 1, 0, -2, 3, -15, -35, -56, -92, 2001, -8555][i], 0))); for( k=13, m, an[k] = (an[k-1] * an[k-7] + 3 * an[k-2] * an[k-6] - 3 * an[k-3] * an[k-5] + 6 * an[k-4]^2) / an[k-8]); an[m]};
A334068
Negative of numerator of y-coordinate of -(2n+1)*P where P is the generator for rational points on the curve y^2 + y = x^3 - x.
Original entry on oeis.org
1, 0, 3, 35, -92, 8555, 162024, 2882165, 3906507129, -88075171080, 260151768440137, 304986999070045520, -100886180199254542253, 1600059682932627475385835, 2620000542207768964443625516
Offset: 0
-P = (0, -1), -3P = (-1 ,0), -5P = (1/4, -3/8), -7P = (-5/9, -35/27).
-
f:= proc(m) option remember; -(-145*procname(m - 7)*procname(m - 1) + 3225*procname(m - 6)*procname(m - 2) - 18705*procname(m - 5)*procname(m - 3) + 14964*procname(m - 4)^2)/procname(m - 8) end proc:
Data:= [1, 0, 3, 35, -92, 8555, 162024, 2882165, 3906507129, -88075171080]:
for i from 0 to 9 do f(i):= Data[i+1] od:
map(f, [$0..20]); # Robert Israel, Oct 06 2020
-
{a(n) = -numerator(ellmul(ellinit([0, 0, 1, -1, 0]), [0, 0], -2*n-1)[2])};
Showing 1-7 of 7 results.
Comments