cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A028940 a(n) = numerator of the X-coordinate of n*P where P is the generator [0,0] for rational points on the curve y^2 + y = x^3 - x.

Original entry on oeis.org

0, 1, -1, 2, 1, 6, -5, 21, -20, 161, 116, 1357, -3741, 18526, 8385, 480106, -239785, 12551561, -59997896, 683916417, 1849037896, 51678803961, -270896443865, 4881674119706, -16683000076735, 997454379905326
Offset: 1

Views

Author

Keywords

Comments

We can take P = P[1] = [x_1, y_1] = [0,0]. Then P[n] = P[1]+P[n-1] = [x_n, y_n] for n >= 2. Sequence gives numerators of the x_n. - N. J. A. Sloane, Jan 27 2022

Examples

			4P = P[4] = [2, -3].
P[1] to P[16] are [0, 0], [1, 0], [-1, -1], [2, -3], [1/4, -5/8], [6, 14], [-5/9, 8/27], [21/25, -69/125], [-20/49, -435/343], [161/16, -2065/64], [116/529, -3612/12167], [1357/841, 28888/24389], [-3741/3481, -43355/205379], [18526/16641, -2616119/2146689], [8385/98596, -28076979/30959144], [480106/4225, 332513754/274625]. - _N. J. A. Sloane_, Jan 27 2022
		

References

  • A. W. Knapp, Elliptic Curves, Princeton 1992, p. 77.

Crossrefs

Programs

  • PARI
    \\ from N. J. A. Sloane, Jan 27 2022. To get the first 40 points P[n].
    \\ define curve E
    E = ellinit([0,0,1,-1,0]) \\ y^2+y = x^3-x
    P = vector(100)
    P[1] = [0,0]
    for(n=2, 40, P[n] = elladd(E, P[1], P[n-1]))
    P

Formula

P = (0, 0), 2P = (1, 0); if kP = (a, b) then (k+1)P = (a' = (b^2 - a^3)/a^2, b' = -1 - b*a'/a).
a(-n) = a(n) = - A006769(n-1) * A006769(n+1) for all n in Z. - Michael Somos, Jul 28 2016

A028943 Denominator of y coordinate of n*P where P is the generator [0,0] for rational points on curve y^2+y = x^3-x.

Original entry on oeis.org

1, 1, 1, 1, 8, 1, 27, 125, 343, 64, 12167, 24389, 205379, 2146689, 30959144, 274625, 3574558889, 50202571769, 553185473329, 4302115807744, 578280195945297, 1469451780501769, 238670664494938073, 13528653463047586625
Offset: 1

Views

Author

Keywords

Comments

We can take P = P[1] = [x_1, y_1] = [0,0]. Then P[n] = P[1]+P[n-1] = [x_n, y_n] for n >= 2. Sequence gives numerators of the x_n. - N. J. A. Sloane, Jan 27 2022

Examples

			5P = (1/4, -5/8).
		

References

  • A. W. Knapp, Elliptic Curves, Princeton 1992, p. 77.

Crossrefs

Programs

Formula

P=(0, 0), 2P=(1, 0), if kP=(a, b) then (k+1)P=(a'=(b^2-a^3)/a^2, b'=-1-b*a'/a).

A028941 Denominator of X-coordinate of n*P where P is the generator [0,0] for rational points on curve y^2+y = x^3-x.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 9, 25, 49, 16, 529, 841, 3481, 16641, 98596, 4225, 2337841, 13608721, 67387681, 264517696, 6941055969, 12925188721, 384768368209, 5677664356225, 61935294530404, 49020596163841, 16063784753682169
Offset: 1

Views

Author

Keywords

Comments

We can take P = P[1] = [x_1, y_1] = [0,0]. Then P[n] = P[1]+P[n-1] = [x_n, y_n] for n >= 2. Sequence gives denominators of the x_n. - N. J. A. Sloane, Jan 27 2022
Squares of terms in A006769 (or A006720).

References

  • G. Everest, A. J. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences: Examples and Applications, AMS Monographs, 2003
  • A. W. Knapp, Elliptic Curves, Princeton 1992, p. 77.

Crossrefs

Programs

  • Mathematica
    nxt[{a_,b_,c_,d_,e_,f_}]:={b,c,d,e,f,((c*2e)-f*b+2d^2)/a}; NestList[nxt,{1,1,1,1,4,1},30][[;;,1]] (* Harvey P. Dale, Dec 26 2024 *)
  • PARI
    - see A028940.

Formula

This sequence satisfies the quadratic recurrence relation a(n)a(n-6)=-a(n-1)a(n-5)+2a(n-2)a(n-4)+2a(n-3)^2 which is a generalized Somos-6 relation. - Graham Everest (g.everest(AT)uea.ac.uk), Dec 16 2002
P=(0, 0), 2P=(1, 0), if kP=(a, b) then (k+1)P=(a'=(b^2-a^3)/a^2, b'=-1-b*a'/a).

A028938 Negative of numerator of y-coordinate of (2n)*P where P is generator for rational points on curve y^2 + y = x^3 - x.

Original entry on oeis.org

0, 3, -14, 69, 2065, -28888, 2616119, -332513754, 8280062505, 18784454671297, -10663732503571536, 8938035295591025771, 31636113722016288336230, -41974401721854929811774227, 754388827236735824355996347601
Offset: 1

Views

Author

Keywords

Examples

			4P = (2, -3).
		

Crossrefs

Cf. A028936, A028937, A028939 (denominator), A028942.

Formula

P=(0, 0), 2P=(1, 0); if kP=(a, b) then (k+1)P = (a' = (b^2-a^3)/a^2, b' = -1 - b*a'/a).
a(n) = A028942(2n). - Seiichi Manyama, Nov 19 2016

A028934 Negative of numerator of y-coordinate of (2n+1)*P where P is the generator for rational points on the curve y^2 + y = x^3 - x.

Original entry on oeis.org

0, 1, 5, -8, 435, 3612, 43355, 28076979, -331948240, 641260644409, 318128427505160, -66316334575107447, 588310630753491921045, 435912379274109872312968, 2181616293371330311419201915
Offset: 0

Views

Author

Keywords

Examples

			3P = (-1, -1). 5P = (1/4, -5/8). 7P = (-5/9, 8/27).
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[n == 0, 0, -Numerator[ #[[3]]/#[[1]]^3 & @ Nest[Function[z, Module[{w, x, y}, {w, x, y} = z; {w x, y^2 - x^3, -y (y^2 - x^3) - (w x)^3}]], {1, 1, 0}, 2 n - 1]]]; (* Michael Somos, Apr 13 2020 *)
  • PARI
    {a(n) = -numerator(ellmul(ellinit([0, 0, 1, -1, 0]), [0, 0], 2*n+1)[2])}; /* Michael Somos, Apr 13 2020 */

Formula

P = (0, 0), 2P = (1, 0); if kP = (a, b) then (k+1)P = (a' = (b^2 - a^3)/a^2, b' = -1 - b*a'/a).
a(n) = A028942(2n+1). - Seiichi Manyama, Nov 20 2016
0 = a(n)*a(n+8) -145*a(n+1)*a(n+7) +3225*a(n+2)*a(n+6) -18705*a(n+3)*a(n+5) +14964*a(n+4)*a(n+4) for all n in Z. - Michael Somos, Apr 13 2020

A278314 a(n) = -c(n-1) * c(n-2) * c(n+3) where c(n) = A006769(n).

Original entry on oeis.org

0, 0, 1, -3, -5, -14, -8, 69, -435, 2065, 3612, 28888, -43355, -2616119, 28076979, -332513754, 331948240, 8280062505, 641260644409, 18784454671297, -318128427505160, 10663732503571536, -66316334575107447, -8938035295591025771, -588310630753491921045
Offset: 1

Views

Author

Michael Somos, Nov 17 2016

Keywords

Comments

a(n) = A028942(n) up to sign.
y coordinate of n*P = -A028942(n) / A028943(n) = a(n) / A006769(n)^3 where P is generator for rational points on curve y^2 + y = x^3 - x.

Examples

			G.f. = x^3 - 3*x^4 - 5*x^5 - 14*x^6 - 8*x^7 + 69*x^8 - 435*x^9 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(m, an); if( n>0, m = n; an = vector( max(12, m), i, if( i<13, [0, 0, 1, -3, -5, -14, -8, 69, -435, 2065, 3612, 28888][i], 0)), m = 1-n; an = vector( max(12, m), i, if( i<13, [1, 1, 1, 0, -2, 3, -15, -35, -56, -92, 2001, -8555][i], 0))); for( k=13, m, an[k] = (an[k-1] * an[k-7] + 3 *  an[k-2] * an[k-6] - 3 * an[k-3] * an[k-5] + 6 * an[k-4]^2) / an[k-8]); an[m]};

Formula

0 = a(n)*a(n+8) - a(n+1)*a(n+7) - 3*a(n+2)*a(n+6) + 3*a(n+3)*a(n+5) - 6*a(n+4)^2 for all n in Z.
0 = a(n+1)*a(n+2)*a(n+6) - 2*a(n+1)*a(n+3)*a(n+5) + 3*a(n+1)*a(n+4)^2 + 3*a(n+2)^2*a(n+5) + a(n+2)*a(n+3)*a(n+4) - a(n+3)^3 for all n in Z.

A334068 Negative of numerator of y-coordinate of -(2n+1)*P where P is the generator for rational points on the curve y^2 + y = x^3 - x.

Original entry on oeis.org

1, 0, 3, 35, -92, 8555, 162024, 2882165, 3906507129, -88075171080, 260151768440137, 304986999070045520, -100886180199254542253, 1600059682932627475385835, 2620000542207768964443625516
Offset: 0

Views

Author

Michael Somos, Apr 13 2020

Keywords

Examples

			-P = (0, -1), -3P = (-1 ,0), -5P = (1/4, -3/8), -7P = (-5/9, -35/27).
		

Crossrefs

Programs

  • Maple
    f:= proc(m) option remember; -(-145*procname(m - 7)*procname(m - 1) + 3225*procname(m - 6)*procname(m - 2) - 18705*procname(m - 5)*procname(m - 3) + 14964*procname(m - 4)^2)/procname(m - 8) end proc:
    Data:= [1, 0, 3, 35, -92, 8555, 162024, 2882165, 3906507129, -88075171080]:
    for i from 0 to 9 do f(i):= Data[i+1] od:
    map(f, [$0..20]); # Robert Israel, Oct 06 2020
  • PARI
    {a(n) = -numerator(ellmul(ellinit([0, 0, 1, -1, 0]), [0, 0], -2*n-1)[2])};

Formula

a(n) = A028934(-1-n) = A028942(-2*n-1) for all n in Z.
0 = a(n)*a(n+8) -145*a(n+1)*a(n+7) +3225*a(n+2)*a(n+6) -18705*a(n+3)*a(n+5) +14964*a(n+4)*a(n+4) for all n in Z.
Showing 1-7 of 7 results.