A028943
Denominator of y coordinate of n*P where P is the generator [0,0] for rational points on curve y^2+y = x^3-x.
Original entry on oeis.org
1, 1, 1, 1, 8, 1, 27, 125, 343, 64, 12167, 24389, 205379, 2146689, 30959144, 274625, 3574558889, 50202571769, 553185473329, 4302115807744, 578280195945297, 1469451780501769, 238670664494938073, 13528653463047586625
Offset: 1
- A. W. Knapp, Elliptic Curves, Princeton 1992, p. 77.
A028942
Negative of numerator of y coordinate of n*P where P is the generator [0,0] for rational points on curve y^2+y = x^3-x.
Original entry on oeis.org
0, 0, 1, 3, 5, -14, -8, 69, 435, 2065, 3612, -28888, 43355, 2616119, 28076979, -332513754, -331948240, 8280062505, 641260644409, 18784454671297, 318128427505160, -10663732503571536, -66316334575107447, 8938035295591025771
Offset: 1
3P = (-1, -1),
4P = (2, -3),
5P = (1/4, -5/8),
6P = (6, 14).
- A. W. Knapp, Elliptic Curves, Princeton 1992, p. 77.
A028941
Denominator of X-coordinate of n*P where P is the generator [0,0] for rational points on curve y^2+y = x^3-x.
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 9, 25, 49, 16, 529, 841, 3481, 16641, 98596, 4225, 2337841, 13608721, 67387681, 264517696, 6941055969, 12925188721, 384768368209, 5677664356225, 61935294530404, 49020596163841, 16063784753682169
Offset: 1
- G. Everest, A. J. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences: Examples and Applications, AMS Monographs, 2003
- A. W. Knapp, Elliptic Curves, Princeton 1992, p. 77.
-
nxt[{a_,b_,c_,d_,e_,f_}]:={b,c,d,e,f,((c*2e)-f*b+2d^2)/a}; NestList[nxt,{1,1,1,1,4,1},30][[;;,1]] (* Harvey P. Dale, Dec 26 2024 *)
-
- see A028940.
A028936
Numerator of x-coordinate of (2n)*P where P is the generator for rational points on the curve y^2 + y = x^3 - x.
Original entry on oeis.org
1, 2, 6, 21, 161, 1357, 18526, 480106, 12551561, 683916417, 51678803961, 4881674119706, 997454379905326, 213822353304561757, 79799551268268089761, 53139223644814624290821, 36631192030206080565822006, 54202648602164057575419038802
Offset: 1
4P =(2, -3).
a(3) = 6 = 2*3 = A006720(4)*A006720(5). - _Michael Somos_, Apr 12 2020
A350622
a(n) = numerator of the X-coordinate of n*P where P is the generator [0,0] for rational points on the curve y^2 + y = x^3 + x^2.
Original entry on oeis.org
0, -1, 1, 2, -3, -2, 21, 11, -140, 209, 1740, -3629, -17139, 194438, 528157, -8338438, 15659721, 665838199, -1524968280, -50443970239, 791991662680, 8985658531079, -211327567932999, 38581695555082, 112336114570262877, -20672037869235082, -59711116955990028899, 1404304980033091755971, 63734020523767895773980, -2251247528715575677121711, -33058398375463796474831580
Offset: 1
P[1] to P[16] are [0, 0], [-1, -1], [1, -2], [2, 3], [-3/4, 1/8], [-2/9, -28/27], [21, -99], [11/49, 20/343], [-140/121, -931/1331], [209/400, -10527/8000], [1740/361, 76400/6859], [-3629/7569, 71117/658503], [-17139/36481, -7705242/6967871], [194438/38809, -97805561/7645373], [528157/1036324, 317884519/1054977832], [-8338438/7187761, -6053168484/19270387241]
- D. Husemoller, Elliptic Curves, Springer, 1987, p. 28.
- A. W. Knapp, Elliptic Curves, Princeton, 1992, p. 64.
-
\\ To get the first 40 points P[n].
\\ define curve E
E = ellinit([0,1,1,0,0])
P[1] = [0,0]
for(n=2, 40, P[n] = elladd(E, P[1], P[n-1]))
P
A350625
a(n) = denominator of the Y-coordinate of n*P where P is the generator [0,0] for rational points on the curve y^2 + y = x^3 + x^2.
Original entry on oeis.org
1, 1, 1, 1, 8, 27, 1, 343, 1331, 8000, 6859, 658503, 6967871, 7645373, 1054977832, 19270387241, 549554511871, 199279038321, 537149706740569, 17795935051712000, 238963978065144151, 27915217583090079761, 3036108535167687186689, 338086202776927409397159
Offset: 1
- D. Husemoller, Elliptic Curves, Springer, 1987, p. 28.
- A. W. Knapp, Elliptic Curves, Princeton, 1992, p. 64.
A028944
Numerator of x-coordinate of (2n+1)*P where P is the generator for rational points on the curve y^2 + y = x^3 - x.
Original entry on oeis.org
0, -1, 1, -5, -20, 116, -3741, 8385, -239785, -59997896, 1849037896, -270896443865, -16683000076735, 2786836257692691, -3148929681285740316, 342115756927607927420, -280251129922563291422645, -804287518035141565236193151
Offset: 0
A350623
a(n) = denominator of the X-coordinate of n*P where P is the generator [0,0] for rational points on the curve y^2 + y = x^3 + x^2.
Original entry on oeis.org
1, 1, 1, 1, 4, 9, 1, 49, 121, 400, 361, 7569, 36481, 38809, 1036324, 7187761, 67092481, 34117281, 6607901521, 68162766400, 385083543601, 9202249657441, 209674135856641, 4853089476046161, 7099336433764, 2600282294202480889, 60193393235277536641, 1371165544633857017809
Offset: 1
- D. Husemoller, Elliptic Curves, Springer, 1987, p. 28.
- A. W. Knapp, Elliptic Curves, Princeton, 1992, p. 64.
A350624
a(n) = numerator of the Y-coordinate of n*P where P is the generator [0,0] for rational points on the curve y^2 + y = x^3 + x^2.
Original entry on oeis.org
0, -1, -2, 3, 1, -28, -99, 20, -931, -10527, 76400, 71117, -7705242, -97805561, 317884519, -6053168484, -584285903929, 17516504939480, 21171512841831, -20045208029885441, -987005650468865600, 26826505806361752519, -24519007717765931978, -338107738763085297600203, 37652404140584119758794769, 262883121764561512399492, -470660250581978416129759599211, -103603683448954712692908522816060, 17053994466435658069907361489699701
Offset: 1
- D. Husemoller, Elliptic Curves, Springer, 1987, p. 28.
- A. W. Knapp, Elliptic Curves, Princeton, 1992, p. 64.
A377264
Consider the recurrence d(k) = (d(k-3)*d(k-2) + 1)/(d(k-5)*d(k-4)*d(k-3)^2*d(k-2)^2*d(k-1)), with d(0..4) = {1,1,1,2,1}. a(n) = numerator(d(2*n+1)).
Original entry on oeis.org
1, 2, 3, 14, 69, 413, 7222, 90211, 2577626, 127385577, 5092018073, 655664812074, 78618294607139, 13276948495989478, 5995083279193033837, 1895278734817024984181, 1542333923096758721461086, 1867485777936169465836858947, 2020248742951852823878208914098, 7078136335206254534330825538868049
Offset: 0
-
d(n) = if(n<5, [1,1,1,2,1][n+1], (d(n-3)*d(n-2)+1)/(d(n-5)*d(n-4)*d(n-3)^2*d(n-2)^2*d(n-1)))
a(n) = numerator(d(2*n+1))
-
a(n) = -numerator(ellmul(ellinit([0, 3, -1, 2, 0]), [-1,0], 2*n+1)[1])
Showing 1-10 of 10 results.
Comments