cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A028943 Denominator of y coordinate of n*P where P is the generator [0,0] for rational points on curve y^2+y = x^3-x.

Original entry on oeis.org

1, 1, 1, 1, 8, 1, 27, 125, 343, 64, 12167, 24389, 205379, 2146689, 30959144, 274625, 3574558889, 50202571769, 553185473329, 4302115807744, 578280195945297, 1469451780501769, 238670664494938073, 13528653463047586625
Offset: 1

Views

Author

Keywords

Comments

We can take P = P[1] = [x_1, y_1] = [0,0]. Then P[n] = P[1]+P[n-1] = [x_n, y_n] for n >= 2. Sequence gives numerators of the x_n. - N. J. A. Sloane, Jan 27 2022

Examples

			5P = (1/4, -5/8).
		

References

  • A. W. Knapp, Elliptic Curves, Princeton 1992, p. 77.

Crossrefs

Programs

Formula

P=(0, 0), 2P=(1, 0), if kP=(a, b) then (k+1)P=(a'=(b^2-a^3)/a^2, b'=-1-b*a'/a).

A028942 Negative of numerator of y coordinate of n*P where P is the generator [0,0] for rational points on curve y^2+y = x^3-x.

Original entry on oeis.org

0, 0, 1, 3, 5, -14, -8, 69, 435, 2065, 3612, -28888, 43355, 2616119, 28076979, -332513754, -331948240, 8280062505, 641260644409, 18784454671297, 318128427505160, -10663732503571536, -66316334575107447, 8938035295591025771
Offset: 1

Views

Author

Keywords

Comments

We can take P = P[1] = [x_1, y_1] = [0,0]. Then P[n] = P[1]+P[n-1] = [x_n, y_n] for n >= 2. Sequence gives negated numerators of the y_n. - N. J. A. Sloane, Jan 27 2022
a(n) = A278314(n) up to sign. - Michael Somos, Nov 19 2016

Examples

			3P = (-1, -1),
4P = (2, -3),
5P = (1/4, -5/8),
6P = (6, 14).
		

References

  • A. W. Knapp, Elliptic Curves, Princeton 1992, p. 77.

Crossrefs

Programs

Formula

P=(0, 0), 2P=(1, 0), if kP=(a, b) then (k+1)P=(a'=(b^2-a^3)/a^2, b'=-1-b*a'/a).

A028941 Denominator of X-coordinate of n*P where P is the generator [0,0] for rational points on curve y^2+y = x^3-x.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 9, 25, 49, 16, 529, 841, 3481, 16641, 98596, 4225, 2337841, 13608721, 67387681, 264517696, 6941055969, 12925188721, 384768368209, 5677664356225, 61935294530404, 49020596163841, 16063784753682169
Offset: 1

Views

Author

Keywords

Comments

We can take P = P[1] = [x_1, y_1] = [0,0]. Then P[n] = P[1]+P[n-1] = [x_n, y_n] for n >= 2. Sequence gives denominators of the x_n. - N. J. A. Sloane, Jan 27 2022
Squares of terms in A006769 (or A006720).

References

  • G. Everest, A. J. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences: Examples and Applications, AMS Monographs, 2003
  • A. W. Knapp, Elliptic Curves, Princeton 1992, p. 77.

Crossrefs

Programs

  • Mathematica
    nxt[{a_,b_,c_,d_,e_,f_}]:={b,c,d,e,f,((c*2e)-f*b+2d^2)/a}; NestList[nxt,{1,1,1,1,4,1},30][[;;,1]] (* Harvey P. Dale, Dec 26 2024 *)
  • PARI
    - see A028940.

Formula

This sequence satisfies the quadratic recurrence relation a(n)a(n-6)=-a(n-1)a(n-5)+2a(n-2)a(n-4)+2a(n-3)^2 which is a generalized Somos-6 relation. - Graham Everest (g.everest(AT)uea.ac.uk), Dec 16 2002
P=(0, 0), 2P=(1, 0), if kP=(a, b) then (k+1)P=(a'=(b^2-a^3)/a^2, b'=-1-b*a'/a).

A028936 Numerator of x-coordinate of (2n)*P where P is the generator for rational points on the curve y^2 + y = x^3 - x.

Original entry on oeis.org

1, 2, 6, 21, 161, 1357, 18526, 480106, 12551561, 683916417, 51678803961, 4881674119706, 997454379905326, 213822353304561757, 79799551268268089761, 53139223644814624290821, 36631192030206080565822006, 54202648602164057575419038802
Offset: 1

Views

Author

Keywords

Examples

			4P =(2, -3).
a(3) = 6 = 2*3 = A006720(4)*A006720(5). - _Michael Somos_, Apr 12 2020
		

Crossrefs

Cf. A028937 (denominator), A028938, A028939, A028940.
Cf. A006720.

Programs

Formula

P=(0, 0), 2P=(1, 0); if kP = (a, b) then (k+1)P = (a' = (b^2 - a^3)/a^2, b' = -1 - b*a'/a).
a(n) = A028940(2n). - Seiichi Manyama, Nov 19 2016
0 = a(n)*a(n+6) - 5*a(n+1)*a(n+5) + 4*a(n+2)*a(n+4) - 20*a(n+3)^2 for all n in Z. a(n) = A006720(n+1)*A006720(n+2). - Michael Somos, Apr 12 2020

A350622 a(n) = numerator of the X-coordinate of n*P where P is the generator [0,0] for rational points on the curve y^2 + y = x^3 + x^2.

Original entry on oeis.org

0, -1, 1, 2, -3, -2, 21, 11, -140, 209, 1740, -3629, -17139, 194438, 528157, -8338438, 15659721, 665838199, -1524968280, -50443970239, 791991662680, 8985658531079, -211327567932999, 38581695555082, 112336114570262877, -20672037869235082, -59711116955990028899, 1404304980033091755971, 63734020523767895773980, -2251247528715575677121711, -33058398375463796474831580
Offset: 1

Views

Author

N. J. A. Sloane, Jan 27 2022

Keywords

Comments

We can take P = P[1] = [x_1, y_1] = [0,0]. Then P[n] = P[1] + P[n-1] = [x_n, y_n] for n >= 2. Sequence gives numerators of the x_n.

Examples

			P[1] to P[16] are [0, 0], [-1, -1], [1, -2], [2, 3], [-3/4, 1/8], [-2/9, -28/27], [21, -99], [11/49, 20/343], [-140/121, -931/1331], [209/400, -10527/8000], [1740/361, 76400/6859], [-3629/7569, 71117/658503], [-17139/36481, -7705242/6967871], [194438/38809, -97805561/7645373], [528157/1036324, 317884519/1054977832], [-8338438/7187761, -6053168484/19270387241]
		

References

  • D. Husemoller, Elliptic Curves, Springer, 1987, p. 28.
  • A. W. Knapp, Elliptic Curves, Princeton, 1992, p. 64.

Crossrefs

Programs

  • PARI
    \\ To get the first 40 points P[n].
    \\ define curve E
    E = ellinit([0,1,1,0,0])
    P[1] = [0,0]
    for(n=2, 40, P[n] = elladd(E, P[1], P[n-1]))
    P

A350625 a(n) = denominator of the Y-coordinate of n*P where P is the generator [0,0] for rational points on the curve y^2 + y = x^3 + x^2.

Original entry on oeis.org

1, 1, 1, 1, 8, 27, 1, 343, 1331, 8000, 6859, 658503, 6967871, 7645373, 1054977832, 19270387241, 549554511871, 199279038321, 537149706740569, 17795935051712000, 238963978065144151, 27915217583090079761, 3036108535167687186689, 338086202776927409397159
Offset: 1

Views

Author

N. J. A. Sloane, Jan 27 2022

Keywords

Comments

We can take P = P[1] = [x_1, y_1] = [0,0]. Then P[n] = P[1]+P[n-1] = [x_n, y_n] for n >= 2. Sequence gives denominators of the y_n.

References

  • D. Husemoller, Elliptic Curves, Springer, 1987, p. 28.
  • A. W. Knapp, Elliptic Curves, Princeton, 1992, p. 64.

Crossrefs

Programs

A028944 Numerator of x-coordinate of (2n+1)*P where P is the generator for rational points on the curve y^2 + y = x^3 - x.

Original entry on oeis.org

0, -1, 1, -5, -20, 116, -3741, 8385, -239785, -59997896, 1849037896, -270896443865, -16683000076735, 2786836257692691, -3148929681285740316, 342115756927607927420, -280251129922563291422645, -804287518035141565236193151
Offset: 0

Views

Author

Keywords

Examples

			7P = (-5/9, 8/27).
		

Crossrefs

Formula

P = (0, 0), 2P = (1, 0); if kP = (a, b) then (k+1)P = (a' = (b^2 - a^3)/a^2, b' = -1 -b*a'/a).
a(n) = A028940(2n+1). - Seiichi Manyama, Nov 20 2016

A350623 a(n) = denominator of the X-coordinate of n*P where P is the generator [0,0] for rational points on the curve y^2 + y = x^3 + x^2.

Original entry on oeis.org

1, 1, 1, 1, 4, 9, 1, 49, 121, 400, 361, 7569, 36481, 38809, 1036324, 7187761, 67092481, 34117281, 6607901521, 68162766400, 385083543601, 9202249657441, 209674135856641, 4853089476046161, 7099336433764, 2600282294202480889, 60193393235277536641, 1371165544633857017809
Offset: 1

Views

Author

N. J. A. Sloane, Jan 27 2022

Keywords

Comments

We can take P = P[1] = [x_1, y_1] = [0,0]. Then P[n] = P[1]+P[n-1] = [x_n, y_n] for n >= 2. Sequence gives denominators of the x_n.

References

  • D. Husemoller, Elliptic Curves, Springer, 1987, p. 28.
  • A. W. Knapp, Elliptic Curves, Princeton, 1992, p. 64.

Crossrefs

Programs

A350624 a(n) = numerator of the Y-coordinate of n*P where P is the generator [0,0] for rational points on the curve y^2 + y = x^3 + x^2.

Original entry on oeis.org

0, -1, -2, 3, 1, -28, -99, 20, -931, -10527, 76400, 71117, -7705242, -97805561, 317884519, -6053168484, -584285903929, 17516504939480, 21171512841831, -20045208029885441, -987005650468865600, 26826505806361752519, -24519007717765931978, -338107738763085297600203, 37652404140584119758794769, 262883121764561512399492, -470660250581978416129759599211, -103603683448954712692908522816060, 17053994466435658069907361489699701
Offset: 1

Views

Author

N. J. A. Sloane, Jan 27 2022

Keywords

Comments

We can take P = P[1] = [x_1, y_1] = [0,0]. Then P[n] = P[1]+P[n-1] = [x_n, y_n] for n >= 2. Sequence gives numerators of the y_n.

References

  • D. Husemoller, Elliptic Curves, Springer, 1987, p. 28.
  • A. W. Knapp, Elliptic Curves, Princeton, 1992, p. 64.

Crossrefs

Programs

A377264 Consider the recurrence d(k) = (d(k-3)*d(k-2) + 1)/(d(k-5)*d(k-4)*d(k-3)^2*d(k-2)^2*d(k-1)), with d(0..4) = {1,1,1,2,1}. a(n) = numerator(d(2*n+1)).

Original entry on oeis.org

1, 2, 3, 14, 69, 413, 7222, 90211, 2577626, 127385577, 5092018073, 655664812074, 78618294607139, 13276948495989478, 5995083279193033837, 1895278734817024984181, 1542333923096758721461086, 1867485777936169465836858947, 2020248742951852823878208914098, 7078136335206254534330825538868049
Offset: 0

Views

Author

Thomas Scheuerle, Oct 22 2024

Keywords

Comments

Consider the sequence s(k) with ordinary generating function: 1/(1-d(0)*x/(1-d(1)*x/(1-d(2)*x/(...)))), the Hankel sequence transform of s(k) is A006720 starting with the third term.
This is a special case of a more general theorem: Consider the sequence h(k) with generating function 1/(1-c(0)*x/(1-c(1)*x/(1-c(2)*x/(...)))), if c(2*k+1) = (c(2*k-2)*c(2*k-1) + t)/(c(2*k-4)*c(2*k-3)*c(2*k-2)^2*c(2*k-1)^2*c(2*k)) for all k with c(< 0) = 1, then the Hankel sequence transform of h(k) satisfies a Somos-4 A(1, t) recurrence.
If we would change the start condition into d(0..4) = {1,1,-1,-2,(5/2)}, the expansion of the continued fraction generating function would give us A171416, its Hankel sequence transform is again A006720. There exist infinitely many sequences with the same Hankel sequence transform.

Crossrefs

The Hankel transform is directly related to A006720: A157002, A157003, A160702, A171416, A173992, A173993, A254314.

Programs

  • PARI
    d(n) = if(n<5, [1,1,1,2,1][n+1], (d(n-3)*d(n-2)+1)/(d(n-5)*d(n-4)*d(n-3)^2*d(n-2)^2*d(n-1)))
    a(n) = numerator(d(2*n+1))
    
  • PARI
    a(n) = -numerator(ellmul(ellinit([0, 3, -1, 2, 0]), [-1,0], 2*n+1)[1])

Formula

a(n) = A006720(n+1)*A006720(n+3).
denominator(d(2*n+1)) = A006720(n+2)^2.
-a(n)/A006720(n+3)^2 are the x-coordinates of (2*n+1) times [-1,0] on the curve y^2 - y = x^3 + 3*x^2 + 2*x. "Times" means here the multiplication under the elliptic group law.
Showing 1-10 of 10 results.