A028940
a(n) = numerator of the X-coordinate of n*P where P is the generator [0,0] for rational points on the curve y^2 + y = x^3 - x.
Original entry on oeis.org
0, 1, -1, 2, 1, 6, -5, 21, -20, 161, 116, 1357, -3741, 18526, 8385, 480106, -239785, 12551561, -59997896, 683916417, 1849037896, 51678803961, -270896443865, 4881674119706, -16683000076735, 997454379905326
Offset: 1
4P = P[4] = [2, -3].
P[1] to P[16] are [0, 0], [1, 0], [-1, -1], [2, -3], [1/4, -5/8], [6, 14], [-5/9, 8/27], [21/25, -69/125], [-20/49, -435/343], [161/16, -2065/64], [116/529, -3612/12167], [1357/841, 28888/24389], [-3741/3481, -43355/205379], [18526/16641, -2616119/2146689], [8385/98596, -28076979/30959144], [480106/4225, 332513754/274625]. - _N. J. A. Sloane_, Jan 27 2022
- A. W. Knapp, Elliptic Curves, Princeton 1992, p. 77.
-
\\ from N. J. A. Sloane, Jan 27 2022. To get the first 40 points P[n].
\\ define curve E
E = ellinit([0,0,1,-1,0]) \\ y^2+y = x^3-x
P = vector(100)
P[1] = [0,0]
for(n=2, 40, P[n] = elladd(E, P[1], P[n-1]))
P
A028942
Negative of numerator of y coordinate of n*P where P is the generator [0,0] for rational points on curve y^2+y = x^3-x.
Original entry on oeis.org
0, 0, 1, 3, 5, -14, -8, 69, 435, 2065, 3612, -28888, 43355, 2616119, 28076979, -332513754, -331948240, 8280062505, 641260644409, 18784454671297, 318128427505160, -10663732503571536, -66316334575107447, 8938035295591025771
Offset: 1
3P = (-1, -1),
4P = (2, -3),
5P = (1/4, -5/8),
6P = (6, 14).
- A. W. Knapp, Elliptic Curves, Princeton 1992, p. 77.
A028941
Denominator of X-coordinate of n*P where P is the generator [0,0] for rational points on curve y^2+y = x^3-x.
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 9, 25, 49, 16, 529, 841, 3481, 16641, 98596, 4225, 2337841, 13608721, 67387681, 264517696, 6941055969, 12925188721, 384768368209, 5677664356225, 61935294530404, 49020596163841, 16063784753682169
Offset: 1
- G. Everest, A. J. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences: Examples and Applications, AMS Monographs, 2003
- A. W. Knapp, Elliptic Curves, Princeton 1992, p. 77.
-
nxt[{a_,b_,c_,d_,e_,f_}]:={b,c,d,e,f,((c*2e)-f*b+2d^2)/a}; NestList[nxt,{1,1,1,1,4,1},30][[;;,1]] (* Harvey P. Dale, Dec 26 2024 *)
-
- see A028940.
A028939
a(n) = denominator of y-coordinate of (2n)*P where P is the generator for rational points on the curve y^2 + y = x^3 - x.
Original entry on oeis.org
1, 1, 1, 125, 64, 24389, 2146689, 274625, 50202571769, 4302115807744, 1469451780501769, 13528653463047586625, 343216282443844010111, 63061816101171948456692661, 495133617181351428873673516736
Offset: 1
A028935
a(n) = A006720(n)^3 (cubed terms of Somos-4 sequence).
Original entry on oeis.org
1, 1, 1, 1, 8, 27, 343, 12167, 205379, 30959144, 3574558889, 553185473329, 578280195945297, 238670664494938073, 487424450554237378792, 2035972062206737347698803, 4801616835579099275862827431
Offset: 0
-
I:=[1,1,1,1,8,27,343,12167,205379]; [n le 9 select I[n] else (129*Self(n-1)*Self(n-8) - 260*Self(n-2)*Self(n-7) - 8385*Self(n-3)*Self(n-6) + 48633*Self(n-4)*Self(n-5))/Self(n-9): n in [1..30]]; // G. C. Greubel, Feb 22 2018
-
b[n_ /; 0 <= n <= 4] = 1; b[n_]:= b[n] = (b[n-1]*b[n-3] + b[n-2]^2)/b[n -4]; Table[(b[n])^3, {n,0,30}] (* G. C. Greubel, Feb 21 2018 *)
a[n_ /; 0 <= n <= 3] = 1; a[4]:= 8; a[5]:= 27; a[6]:= 343; a[7]:= 12167; a[8]:= 205379; a[9]:= 30959144; a[n_]:= a[n] = (129*a[n-1]*a[n-8] - 260*a[n-2]*a[n-7] - 8385*a[n-3]*a[n-6] + 48633*a[n-4]*a[n-5])/a[n-9]; Table[a[n], {n,0,30}] (* G. C. Greubel, Feb 22 2018 *)
-
{b(n) = if(n< 4, 1, (b(n-1)*b(n-3) + b(n-2)^2)/b(n-4))};
for(n=0,30, print1((b(n))^3, ", ")) \\ G. C. Greubel, Feb 21 2018
A350622
a(n) = numerator of the X-coordinate of n*P where P is the generator [0,0] for rational points on the curve y^2 + y = x^3 + x^2.
Original entry on oeis.org
0, -1, 1, 2, -3, -2, 21, 11, -140, 209, 1740, -3629, -17139, 194438, 528157, -8338438, 15659721, 665838199, -1524968280, -50443970239, 791991662680, 8985658531079, -211327567932999, 38581695555082, 112336114570262877, -20672037869235082, -59711116955990028899, 1404304980033091755971, 63734020523767895773980, -2251247528715575677121711, -33058398375463796474831580
Offset: 1
P[1] to P[16] are [0, 0], [-1, -1], [1, -2], [2, 3], [-3/4, 1/8], [-2/9, -28/27], [21, -99], [11/49, 20/343], [-140/121, -931/1331], [209/400, -10527/8000], [1740/361, 76400/6859], [-3629/7569, 71117/658503], [-17139/36481, -7705242/6967871], [194438/38809, -97805561/7645373], [528157/1036324, 317884519/1054977832], [-8338438/7187761, -6053168484/19270387241]
- D. Husemoller, Elliptic Curves, Springer, 1987, p. 28.
- A. W. Knapp, Elliptic Curves, Princeton, 1992, p. 64.
-
\\ To get the first 40 points P[n].
\\ define curve E
E = ellinit([0,1,1,0,0])
P[1] = [0,0]
for(n=2, 40, P[n] = elladd(E, P[1], P[n-1]))
P
A350625
a(n) = denominator of the Y-coordinate of n*P where P is the generator [0,0] for rational points on the curve y^2 + y = x^3 + x^2.
Original entry on oeis.org
1, 1, 1, 1, 8, 27, 1, 343, 1331, 8000, 6859, 658503, 6967871, 7645373, 1054977832, 19270387241, 549554511871, 199279038321, 537149706740569, 17795935051712000, 238963978065144151, 27915217583090079761, 3036108535167687186689, 338086202776927409397159
Offset: 1
- D. Husemoller, Elliptic Curves, Springer, 1987, p. 28.
- A. W. Knapp, Elliptic Curves, Princeton, 1992, p. 64.
A278314
a(n) = -c(n-1) * c(n-2) * c(n+3) where c(n) = A006769(n).
Original entry on oeis.org
0, 0, 1, -3, -5, -14, -8, 69, -435, 2065, 3612, 28888, -43355, -2616119, 28076979, -332513754, 331948240, 8280062505, 641260644409, 18784454671297, -318128427505160, 10663732503571536, -66316334575107447, -8938035295591025771, -588310630753491921045
Offset: 1
G.f. = x^3 - 3*x^4 - 5*x^5 - 14*x^6 - 8*x^7 + 69*x^8 - 435*x^9 + ...
-
{a(n) = my(m, an); if( n>0, m = n; an = vector( max(12, m), i, if( i<13, [0, 0, 1, -3, -5, -14, -8, 69, -435, 2065, 3612, 28888][i], 0)), m = 1-n; an = vector( max(12, m), i, if( i<13, [1, 1, 1, 0, -2, 3, -15, -35, -56, -92, 2001, -8555][i], 0))); for( k=13, m, an[k] = (an[k-1] * an[k-7] + 3 * an[k-2] * an[k-6] - 3 * an[k-3] * an[k-5] + 6 * an[k-4]^2) / an[k-8]); an[m]};
A350623
a(n) = denominator of the X-coordinate of n*P where P is the generator [0,0] for rational points on the curve y^2 + y = x^3 + x^2.
Original entry on oeis.org
1, 1, 1, 1, 4, 9, 1, 49, 121, 400, 361, 7569, 36481, 38809, 1036324, 7187761, 67092481, 34117281, 6607901521, 68162766400, 385083543601, 9202249657441, 209674135856641, 4853089476046161, 7099336433764, 2600282294202480889, 60193393235277536641, 1371165544633857017809
Offset: 1
- D. Husemoller, Elliptic Curves, Springer, 1987, p. 28.
- A. W. Knapp, Elliptic Curves, Princeton, 1992, p. 64.
A350624
a(n) = numerator of the Y-coordinate of n*P where P is the generator [0,0] for rational points on the curve y^2 + y = x^3 + x^2.
Original entry on oeis.org
0, -1, -2, 3, 1, -28, -99, 20, -931, -10527, 76400, 71117, -7705242, -97805561, 317884519, -6053168484, -584285903929, 17516504939480, 21171512841831, -20045208029885441, -987005650468865600, 26826505806361752519, -24519007717765931978, -338107738763085297600203, 37652404140584119758794769, 262883121764561512399492, -470660250581978416129759599211, -103603683448954712692908522816060, 17053994466435658069907361489699701
Offset: 1
- D. Husemoller, Elliptic Curves, Springer, 1987, p. 28.
- A. W. Knapp, Elliptic Curves, Princeton, 1992, p. 64.
Showing 1-10 of 10 results.
Comments