cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A026811 Number of partitions of n in which the greatest part is 5.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 10, 13, 18, 23, 30, 37, 47, 57, 70, 84, 101, 119, 141, 164, 192, 221, 255, 291, 333, 377, 427, 480, 540, 603, 674, 748, 831, 918, 1014, 1115, 1226, 1342, 1469, 1602, 1747, 1898, 2062, 2233, 2418, 2611, 2818, 3034, 3266, 3507, 3765
Offset: 0

Views

Author

Keywords

Comments

Essentially same as A001401: five zeros followed by A001401.
Also number of partitions of n into exactly 5 parts.

References

  • D. E. Knuth, The Art of Computer Programming, vol. 4, fascicle 3, Generating All Combinations and Partitions, Section 7.2.1.4., p. 56, exercise 31.

Crossrefs

Cf. A026810, A026812, A026813, A026814, A026815, A026816, A002622 (partial sums), A008667 (first differences).

Programs

  • GAP
    List([0..70],n->NrPartitions(n,5)); # Muniru A Asiru, May 17 2018
  • Mathematica
    Table[Count[IntegerPartitions[n], {5, _}], {n, 0, 55}] (* corrected by Harvey P. Dale, Oct 24 2011 *)
    Table[Length[IntegerPartitions[n, {5}]], {n, 0, 55}] (* Eric Rowland, Mar 02 2017 *)
    CoefficientList[Series[x^5/Product[1 - x^k, {k, 1, 5}], {x, 0, 65}], x] (* Robert A. Russell, May 13 2018 *)
    Drop[LinearRecurrence[{1,1,0,0,-1,-1,-1,1,1,1,0,0,-1,-1,1}, Append[Table[0,{14}],1],110],9] (* Robert A. Russell, May 17 2018 *)
  • PARI
    a(n)=round((n^4+10*(n^3+n^2)-75*n-45*(-1)^n*n)/2880);
    for(n=0,10000,print(n," ",a(n))); /* b-file format */
    /* Washington Bomfim, Jul 03 2012 */
    
  • PARI
    x='x+O('x^99); concat(vector(5), Vec(x^5/prod(k=1, 5, 1-x^k))) \\ Altug Alkan, May 17 2018
    

Formula

a(n) = round( ((n^4+10*(n^3+n^2)-75*n -45*n*(-1)^n)) / 2880 ). - Washington Bomfim, Jul 03 2012
G.f.: x^5/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)). - Joerg Arndt, Jul 04 2012
a(n) = A008284(n,5). - Robert A. Russell, May 13 2018
From Gregory L. Simay, Jul 28 2019: (Start)
a(2n) = a(2n-1) + a(n+1) + a(n) - a(n-3) - a(n-4);
a(2n+1) = a(2n) + a(n+3) - a(n-5). (End)
From R. J. Mathar, Jun 23 2021: (Start)
a(n) - a(n-5) = A001400(n-5).
a(n) - a(n-4) = A008669(n-5).
a(n) - a(n-3) = A029007(n-5).
a(n) - a(n-2) = A029032(n-5).
a(n) = +a(n-1) +a(n-2) -a(n-5) -a(n-6) -a(n-7) +a(n-8) +a(n-9) +a(n-10) -a(n-13) -a(n-14) +a(n-15). (End)

Extensions

More terms from Robert G. Wilson v, Jan 11 2002
a(0)=0 inserted by Joerg Arndt, Jul 04 2012

A029194 Expansion of 1/((1-x^2)*(1-x^5)*(1-x^6)*(1-x^8)).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 2, 1, 3, 1, 4, 2, 5, 3, 6, 4, 8, 5, 10, 6, 12, 8, 14, 10, 17, 12, 20, 14, 23, 17, 27, 20, 31, 23, 35, 27, 40, 31, 45, 35, 51, 40, 57, 45, 63, 51, 70, 57, 78, 63, 86, 70, 94, 78, 103, 86, 113, 94, 123, 103
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of partitions of n into parts 2, 5, 6, and 8. - Joerg Arndt, Jun 11 2025

Crossrefs

Cf. A029032.

Programs

  • Mathematica
    CoefficientList[Series[1/((1 - x^2) (1 - x^5) (1 - x^6) (1 - x^8)), {x, 0, 100}], x] (* Vincenzo Librandi, Jun 02 2014 *)
    LinearRecurrence[{0,1,0,0,1,1,-1,0,0,-1,-1,0,0,-1,1,1,0,0,1,0,-1},{1,0,1,0,1,1,2,1,3,1,4,2,5,3,6,4,8,5,10,6,12},100] (* Harvey P. Dale, May 28 2017 *)

Formula

From Hoang Xuan Thanh, Jun 11 2025: (Start)
a(2*n) = A029032(n); a(2*n+1) = A029032(n-2) for n > 1.
a(n) = floor((2*n^3 + (63+15*(-1)^n)*n^2 + (597+315*(-1)^n)*n + 4330 + 1430*(-1)^n)/5760). (End)
Showing 1-2 of 2 results.