cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A029041 Expansion of 1/((1-x)*(1-x^3)*(1-x^5)*(1-x^9)).

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 4, 5, 7, 8, 9, 11, 12, 14, 17, 18, 20, 24, 26, 29, 33, 35, 39, 44, 47, 51, 57, 61, 66, 73, 77, 83, 91, 96, 103, 112, 118, 126, 136, 143, 152, 163, 171, 181, 194, 203, 214, 228, 238, 251, 266, 277, 291, 308, 321, 336, 354, 368, 385, 405
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of n into parts 1, 3, 5, and 9. - Alois P. Heinz, Oct 01 2014

Programs

  • Mathematica
    CoefficientList[Series[1/((1-x)(1-x^3)(1-x^5)(1-x^9)), {x, 0, 90}], x] (* Jinyuan Wang, Mar 24 2020 *)
  • PARI
    a(n)=round((n+9)*(n^2+18*n+52)/810+(n\3+1)*(3*!(n%3)-1)/27+[12,-5,-10][n%3+1]/81) \\ Tani Akinari, May 23 2014
    
  • PARI
    a(n)=(n^3+27*n^2+204*n+700+10*[3*n+29,4,0][n%3+1])\810 \\ Tani Akinari, Oct 01 2014
    
  • PARI
    Vec(1/((1-x)*(1-x^3)*(1-x^5)*(1-x^9)) + O(x^80)) \\ Michel Marcus, Oct 01 2014

Formula

a(n) = floor((n^3+27*n^2+204*n+700+10*[3*n+29,4,0][(n mod 3)+1])/810). - Tani Akinari, Oct 01 2014
a(n) = 1 + floor((n^3+27*n^2+204*n+30*n*[(n mod 3)=0])/810) where [] is Iverson bracket. - Hoang Xuan Thanh, Jun 09 2025