A029578 The natural numbers interleaved with the even numbers.
0, 0, 1, 2, 2, 4, 3, 6, 4, 8, 5, 10, 6, 12, 7, 14, 8, 16, 9, 18, 10, 20, 11, 22, 12, 24, 13, 26, 14, 28, 15, 30, 16, 32, 17, 34, 18, 36, 19, 38, 20, 40, 21, 42, 22, 44, 23, 46, 24, 48, 25, 50, 26, 52, 27, 54, 28, 56, 29, 58, 30, 60, 31, 62, 32, 64, 33, 66, 34, 68, 35, 70, 36, 72
Offset: 0
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- Index entries for two-way infinite sequences
- Index entries for linear recurrences with constant coefficients, signature (0,2,0,-1).
Crossrefs
Programs
-
Haskell
import Data.List (transpose) a029578 n = (n - n `mod` 2) `div` (2 - n `mod` 2) a029578_list = concat $ transpose [a001477_list, a005843_list] -- Reinhard Zumkeller, Nov 27 2012
-
Magma
A029578:= func< n | (n + (n-2)*(n mod 2))/2 >; [A029578(n): n in [0..80]]; // G. C. Greubel, Jan 22 2025
-
Mathematica
With[{nn=40},Riffle[Range[0,nn],Range[0,2nn,2]]] (* or *) LinearRecurrence[ {0,2,0,-1},{0,0,1,2},80] (* Harvey P. Dale, Aug 23 2015 *)
-
PARI
a(n)=if(n%2,n-1,n/2)
-
Python
def A029578(n): return (n + (n-2)*(n%2))//2 print([A029578(n) for n in range(81)]) # G. C. Greubel, Jan 22 2025
Formula
a(n) = (3*n - 2 - (-1)^n*(n - 2))/4.
a(n+4) = 2*a(n+2) - a(n).
G.f.: x^2*(1 + 2*x)/(1-x^2)^2.
a(n) = floor((n+1)/2) + (n is odd)*floor((n+1)/2).
a(n) = (n - n mod 2)/(2 - n mod 2). - Reinhard Zumkeller, Jul 30 2002
a(n) = floor(n/2)*binomial(2, mod(n, 2)) - Paul Barry, May 25 2003
a(2*n) = n.
a(2*n-1) = 2*n-2.
a(-n) = -A065423(n+2).
a(n) = Sum_{k=0..floor((n-2)/2)} (C(n-k-2, k) mod 2)((1+(-1)^k)/2)*2^A000120(n-2k-2). - Paul Barry, Jan 06 2005
a(n) = Sum_{k=0..n-2} gcd(n-k-1, k+1). - Paul Barry, May 03 2005
For n>6: a(n) = floor(a(n-1)*a(n-2)/a(n-3)). - Reinhard Zumkeller, Mar 06 2011
E.g.f.: (1/4)*((x+2)*exp(-x) + (3*x-2)*exp(x)). - G. C. Greubel, Jan 22 2025
Extensions
Explicated definition by Reinhard Zumkeller, Nov 27 2012
Title simplified by Sean A. Irvine, Feb 29 2020
Comments