A029600 Numbers in the (2,3)-Pascal triangle (by row).
1, 2, 3, 2, 5, 3, 2, 7, 8, 3, 2, 9, 15, 11, 3, 2, 11, 24, 26, 14, 3, 2, 13, 35, 50, 40, 17, 3, 2, 15, 48, 85, 90, 57, 20, 3, 2, 17, 63, 133, 175, 147, 77, 23, 3, 2, 19, 80, 196, 308, 322, 224, 100, 26, 3, 2, 21, 99, 276, 504, 630, 546, 324, 126, 29, 3, 2, 23, 120, 375, 780, 1134, 1176, 870, 450, 155, 32, 3
Offset: 0
Examples
First few rows are: 1; 2, 3; 2, 5, 3; 2, 7, 8, 3; 2, 9, 15, 11, 3; ...
Links
- Reinhard Zumkeller, Rows n=0..150 of triangle, flattened
Programs
-
GAP
T:= function(n,k) if n=0 and k=0 then return 1; elif k=0 then return 2; elif k=n then return 3; else return T(n-1,k-1) + T(n-1,k); fi; end; Flat(List([0..12], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Nov 12 2019
-
Haskell
a029600 n k = a029600_tabl !! n !! k a029600_row n = a029600_tabl !! n a029600_tabl = [1] : iterate (\row -> zipWith (+) ([0] ++ row) (row ++ [0])) [2,3] -- Reinhard Zumkeller, Apr 08 2012
-
Maple
T:= proc(n, k) option remember; if k=0 and n=0 then 1 elif k=0 then 2 elif k=n then 3 else T(n-1, k-1) + T(n-1, k) fi end: seq(seq(T(n, k), k=0..n), n=0..12); # G. C. Greubel, Nov 12 2019
-
Mathematica
T[n_, k_]:= T[n, k]= If[n==0 && k==0, 1, If[k==0, 2, If[k==n, 3, T[n-1, k-1] + T[n-1, k] ]]]; Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Nov 12 2019 *)
-
PARI
T(n,k) = if(n==0 && k==0, 1, if(k==0, 2, if(k==n, 3, T(n-1, k-1) + T(n-1, k) ))); \\ G. C. Greubel, Nov 12 2019
-
Sage
@CachedFunction def T(n, k): if (n==0 and k==0): return 1 elif (k==0): return 2 elif (k==n): return 3 else: return T(n-1,k-1) + T(n-1, k) [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Nov 12 2019
Formula
T(n,k) = T(n-1,k-1) + T(n-1,k) with T(0,0)=1, T(n,0)=2, T(n,n)=3; n, k > 0. - Boris Putievskiy, Sep 04 2013
G.f.: (-1-2*x*y-x)/(-1+x*y+x). - R. J. Mathar, Aug 11 2015
Extensions
More terms from James Sellers
Comments