cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A029600 Numbers in the (2,3)-Pascal triangle (by row).

Original entry on oeis.org

1, 2, 3, 2, 5, 3, 2, 7, 8, 3, 2, 9, 15, 11, 3, 2, 11, 24, 26, 14, 3, 2, 13, 35, 50, 40, 17, 3, 2, 15, 48, 85, 90, 57, 20, 3, 2, 17, 63, 133, 175, 147, 77, 23, 3, 2, 19, 80, 196, 308, 322, 224, 100, 26, 3, 2, 21, 99, 276, 504, 630, 546, 324, 126, 29, 3, 2, 23, 120, 375, 780, 1134, 1176, 870, 450, 155, 32, 3
Offset: 0

Views

Author

Keywords

Comments

Reverse of A029618. - Philippe Deléham, Nov 21 2006
Triangle T(n,k), read by rows, given by (2,-1,0,0,0,0,0,0,0,...) DELTA (3,-2,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 10 2011
Row n: expansion of (2+3x)*(1+x)^(n-1), n>0. - Philippe Deléham, Oct 10 2011.
For n > 0: T(n,k) = A029635(n,k) + A007318(n,k), 0 <= k <= n. - Reinhard Zumkeller, Apr 16 2012
For a closed-form formula for generalized Pascal's triangle see A228576. - Boris Putievskiy, Sep 04 2013
For n>0, row sums = 5*2^(n-1). Generally, for all (a,b)-Pascal triangles, row sums are (a+b)*2^(n-1), n>0. - Bob Selcoe, Mar 28 2015

Examples

			First few rows are:
  1;
  2, 3;
  2, 5,  3;
  2, 7,  8,  3;
  2, 9, 15, 11, 3;
...
		

Crossrefs

Cf. A007318 (Pascal's triangle), A029618, A084938, A228196, A228576.

Programs

  • GAP
    T:= function(n,k)
        if n=0 and k=0 then return 1;
        elif k=0 then return 2;
        elif k=n then return 3;
        else return T(n-1,k-1) + T(n-1,k);
        fi;
      end;
    Flat(List([0..12], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Nov 12 2019
  • Haskell
    a029600 n k = a029600_tabl !! n !! k
    a029600_row n = a029600_tabl !! n
    a029600_tabl = [1] : iterate
       (\row -> zipWith (+) ([0] ++ row) (row ++ [0])) [2,3]
    -- Reinhard Zumkeller, Apr 08 2012
    
  • Maple
    T:= proc(n, k) option remember;
          if k=0 and n=0 then 1
        elif k=0 then 2
        elif k=n then 3
        else T(n-1, k-1) + T(n-1, k)
          fi
        end:
    seq(seq(T(n, k), k=0..n), n=0..12); # G. C. Greubel, Nov 12 2019
  • Mathematica
    T[n_, k_]:= T[n, k]= If[n==0 && k==0, 1, If[k==0, 2, If[k==n, 3, T[n-1, k-1] + T[n-1, k] ]]]; Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Nov 12 2019 *)
  • PARI
    T(n,k) = if(n==0 && k==0, 1, if(k==0, 2, if(k==n, 3, T(n-1, k-1) + T(n-1, k) ))); \\ G. C. Greubel, Nov 12 2019
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (n==0 and k==0): return 1
        elif (k==0): return 2
        elif (k==n): return 3
        else: return T(n-1,k-1) + T(n-1, k)
    [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Nov 12 2019
    

Formula

T(n,k) = T(n-1,k-1) + T(n-1,k) with T(0,0)=1, T(n,0)=2, T(n,n)=3; n, k > 0. - Boris Putievskiy, Sep 04 2013
G.f.: (-1-2*x*y-x)/(-1+x*y+x). - R. J. Mathar, Aug 11 2015

Extensions

More terms from James Sellers