cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A029609 Central numbers in the (2,3)-Pascal triangle A029600.

Original entry on oeis.org

1, 5, 15, 50, 175, 630, 2310, 8580, 32175, 121550, 461890, 1763580, 6760390, 26001500, 100291500, 387793800, 1502700975, 5834015550, 22687838250, 88363159500, 344616322050, 1345644686100, 5260247409300, 20583576819000, 80619009207750, 316026516094380, 1239796332370260
Offset: 0

Views

Author

Keywords

Comments

For n > 0 also central terms of (1,4)-Pascal triangle A095666. - Reinhard Zumkeller, Apr 08 2012

Crossrefs

Programs

  • Haskell
    a029609 n = a029600 (2*n) n  -- Reinhard Zumkeller, Apr 08 2012
  • Mathematica
    a[n_]=(5*Binomial[2*n,n]-3KroneckerDelta[n,0])/2; Array[a,27,0] (* Stefano Spezia, Feb 14 2025 *)

Formula

From Peter Bala, Aug 16 2011: (Start)
a(n) = (5/2)*binomial(2*n,n) for n >= 1.
O.g.f.: -3/2+5/2*1/sqrt(1-4*x) = 1+5*x+15*x^2+50*x^3+... = 1+5*x*d/dx(log(C(x))), where C(x) is the o.g.f. for the Catalan numbers A000108. (End)
E.g.f.: (5*exp(2*x)*BesselI(0, 2*x) - 3)/2. - Stefano Spezia, Feb 14 2025

Extensions

More terms from James Sellers