A029609 Central numbers in the (2,3)-Pascal triangle A029600.
1, 5, 15, 50, 175, 630, 2310, 8580, 32175, 121550, 461890, 1763580, 6760390, 26001500, 100291500, 387793800, 1502700975, 5834015550, 22687838250, 88363159500, 344616322050, 1345644686100, 5260247409300, 20583576819000, 80619009207750, 316026516094380, 1239796332370260
Offset: 0
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
Programs
-
Haskell
a029609 n = a029600 (2*n) n -- Reinhard Zumkeller, Apr 08 2012
-
Mathematica
a[n_]=(5*Binomial[2*n,n]-3KroneckerDelta[n,0])/2; Array[a,27,0] (* Stefano Spezia, Feb 14 2025 *)
Formula
From Peter Bala, Aug 16 2011: (Start)
a(n) = (5/2)*binomial(2*n,n) for n >= 1.
O.g.f.: -3/2+5/2*1/sqrt(1-4*x) = 1+5*x+15*x^2+50*x^3+... = 1+5*x*d/dx(log(C(x))), where C(x) is the o.g.f. for the Catalan numbers A000108. (End)
E.g.f.: (5*exp(2*x)*BesselI(0, 2*x) - 3)/2. - Stefano Spezia, Feb 14 2025
Extensions
More terms from James Sellers
Comments