cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A029710 Primes such that next prime is 4 greater.

Original entry on oeis.org

7, 13, 19, 37, 43, 67, 79, 97, 103, 109, 127, 163, 193, 223, 229, 277, 307, 313, 349, 379, 397, 439, 457, 463, 487, 499, 613, 643, 673, 739, 757, 769, 823, 853, 859, 877, 883, 907, 937, 967, 1009, 1087, 1093, 1213, 1279, 1297, 1303, 1423, 1429
Offset: 1

Views

Author

Keywords

Comments

Union with A124588 gives A124589. - Reinhard Zumkeller, Dec 23 2006
For any prime p > 3, if p + 4 is prime then necessarily it is the next prime. But there cannot be three consecutive primes with mutual distance 4: If p and p + 4 are prime, then p+8 is an odd multiple of 3 (cf. formula). - M. F. Hasler, Jan 15 2013
The smaller members p of cousin prime pairs (p,p+4) excluding p=3. - Marc Morgenegg, Apr 19 2016

Examples

			79 is a term as the next prime is 79 + 4 = 83. 3 is not a term even though 3 + 4 = 7 is prime, since it is not the next one.
		

Crossrefs

Essentially the same as A023200.

Programs

  • MATLAB
    p=primes(1700);m=1;
    for u=1:length(p)-4
       if and(isprime(p(u)+4)==1,p(u+1)==p(u)+4);sol(m)=p(u);m=m+1;end
    end
    sol % Marius A. Burtea, Jan 24 2019
  • Magma
    [p:p in PrimesUpTo(1700)| IsPrime(p+4) and NextPrime(p) eq p+4] // Marius A. Burtea, Jan 24 2019
    
  • Maple
    for i from 1 to 226 do if ithprime(i+1) = ithprime(i) + 4 then print({ithprime(i)}); fi; od; # Zerinvary Lajos, Mar 19 2007
  • Mathematica
    Select[Prime[Range[225]], NextPrime[#] == # + 4 &] (* Alonso del Arte, Jan 17 2013 *)
    Transpose[Select[Partition[Prime[Range[300]],2,1],#[[2]]-#[[1]]==4&]] [[1]] (* Harvey P. Dale, Mar 28 2016 *)
  • PARI
    forprime(p=1, 1e4, if(nextprime(p+1)-p==4, print1(p, ", "))) \\ Felix Fröhlich, Aug 16 2014
    

Formula

a(n) = A031505(n + 1) - 4 = A029708(n) - 2.
a(n) = 1 (mod 6) for all n; (a(n) + 2)/3 = A157834(n), i.e., a(n) = 3*A157834(n) - 2. - M. F. Hasler, Jan 15 2013