A029739 Numbers that are congruent to {1, 3, 4} mod 6.
1, 3, 4, 7, 9, 10, 13, 15, 16, 19, 21, 22, 25, 27, 28, 31, 33, 34, 37, 39, 40, 43, 45, 46, 49, 51, 52, 55, 57, 58, 61, 63, 64, 67, 69, 70, 73, 75, 76, 79, 81, 82, 85, 87, 88, 91, 93, 94, 97, 99, 100, 103, 105, 106, 109, 111, 112, 115, 117, 118, 121, 123, 124
Offset: 1
Links
- Patrick De Geest, More palindromic products of integer sequences: Three consecutive palindromes.
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).
Programs
-
Magma
[n : n in [0..150] | n mod 6 in {1, 3, 4}]; // Vincenzo Librandi, Dec 29 2010
-
Maple
A029739:=n->2*(3*n-2-cos(2*n*Pi/3))/3: seq(A029739(n), n=1..100); # Wesley Ivan Hurt, Jun 11 2016
-
Mathematica
Select[Range[0, 202], MemberQ[{1, 3, 4}, Mod[#, 6]] &] (* and *) Join[{1}, Accumulate[Total /@ CellularAutomaton[65, {1, 1, 0, 0, 1, 0}, 100]]] (* Vladimir Joseph Stephan Orlovsky, Feb 11 2012 *) LinearRecurrence[{1,0,1,-1},{1,3,4,7},80] (* Harvey P. Dale, Aug 21 2021 *)
Formula
G.f.: x*(2*x+1)*(x^2+1)/((1+x+x^2)*(x-1)^2). - R. J. Mathar, Aug 24 2011
From Wesley Ivan Hurt, Jun 11 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n > 4.
a(n) = 2*(3*n - 2 - cos(2*n*Pi/3))/3.
a(3k) = 6k-2, a(3k-1) = 6k-3, a(3k-2) = 6k-5. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = (3+2*sqrt(3))*Pi/36 + log(2+sqrt(3))/(2*sqrt(3)) - log(2)/6. - Amiram Eldar, Dec 16 2021