cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A029739 Numbers that are congruent to {1, 3, 4} mod 6.

Original entry on oeis.org

1, 3, 4, 7, 9, 10, 13, 15, 16, 19, 21, 22, 25, 27, 28, 31, 33, 34, 37, 39, 40, 43, 45, 46, 49, 51, 52, 55, 57, 58, 61, 63, 64, 67, 69, 70, 73, 75, 76, 79, 81, 82, 85, 87, 88, 91, 93, 94, 97, 99, 100, 103, 105, 106, 109, 111, 112, 115, 117, 118, 121, 123, 124
Offset: 1

Views

Author

Keywords

Programs

  • Magma
    [n : n in [0..150] | n mod 6 in {1, 3, 4}]; // Vincenzo Librandi, Dec 29 2010
  • Maple
    A029739:=n->2*(3*n-2-cos(2*n*Pi/3))/3: seq(A029739(n), n=1..100); # Wesley Ivan Hurt, Jun 11 2016
  • Mathematica
    Select[Range[0, 202], MemberQ[{1, 3, 4}, Mod[#, 6]] &] (* and *) Join[{1}, Accumulate[Total /@ CellularAutomaton[65, {1, 1, 0, 0, 1, 0}, 100]]] (* Vladimir Joseph Stephan Orlovsky, Feb 11 2012 *)
    LinearRecurrence[{1,0,1,-1},{1,3,4,7},80] (* Harvey P. Dale, Aug 21 2021 *)

Formula

G.f.: x*(2*x+1)*(x^2+1)/((1+x+x^2)*(x-1)^2). - R. J. Mathar, Aug 24 2011
From Wesley Ivan Hurt, Jun 11 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n > 4.
a(n) = 2*(3*n - 2 - cos(2*n*Pi/3))/3.
a(3k) = 6k-2, a(3k-1) = 6k-3, a(3k-2) = 6k-5. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = (3+2*sqrt(3))*Pi/36 + log(2+sqrt(3))/(2*sqrt(3)) - log(2)/6. - Amiram Eldar, Dec 16 2021