cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A029743 Primes with distinct digits.

Original entry on oeis.org

2, 3, 5, 7, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 103, 107, 109, 127, 137, 139, 149, 157, 163, 167, 173, 179, 193, 197, 239, 241, 251, 257, 263, 269, 271, 281, 283, 293, 307, 317, 347, 349, 359, 367, 379, 389
Offset: 1

Views

Author

Keywords

Comments

This sequence has 283086 terms, the last being 987654103 = A007810(9). - Jud McCranie
Intersection of A010784 and A000040; A178788(a(n)) * A010051(a(n)) = 1. [Reinhard Zumkeller, Sep 25 2011]

Crossrefs

Programs

  • Haskell
    a029743 n = a029743_list !! (n-1)
    a029743_list = filter ((== 1) . a010051) a010784_list
    -- Reinhard Zumkeller, Sep 25 2011
    
  • Mathematica
    t={};Do[p=Prime[n];If[Select[Transpose[Tally[IntegerDigits[p]]][[2]],#>1 &]=={},AppendTo[t,p]],{n,77}];t (* Jayanta Basu, May 04 2013 *)
    Select[Prime[Range[80]],Max[DigitCount[#]]<2&] (* Harvey P. Dale, Sep 13 2020 *)
  • Python
    from sympy import isprime
    from itertools import permutations as P
    dist = [p for d in range(1, 11) for p in P("0123456789", d) if p[0] != "0"]
    afull = [t for t in (int("".join(p)) for p in dist) if isprime(t)]
    print(afull[:100]) # Michael S. Branicky, Aug 04 2022