cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A029790 None of the digits in k is present in k^2 or k^3.

Original entry on oeis.org

2, 3, 7, 8, 22, 47, 53, 77, 92, 157, 187, 188, 192, 552, 558, 577, 707, 772, 922, 2522, 8338, 17177, 66888, 575757, 929522, 1717177, 8888588
Offset: 1

Views

Author

Keywords

Comments

If it exists, a(28) > 10^9. - Derek Orr, Jul 13 2014
a(28) > 2 * 10^9. - Pratik Koirala, Eugene Fiorini, Otis Tweneboah, Nathan Fox, Jul 13 2015
From Manfred Scheucher, Jul 23 2015: (Start)
I strongly conjecture that a(28) does not exist.
If a(28) exists, then a(28) > 10^20.
(End) [Edited by Peter Munn, Feb 08 2024 and Manfred Scheucher, Feb 09 2024]
If it exists, a(28) > 10^37. - Michael S. Branicky, May 05 2024

Examples

			For k = 47, k^2 = 2209 and k^3 = 103823. 4 and 7 do not appear in either of these numbers.
		

Programs

  • Maple
    filter:= proc(n) local S1,S23;
    S1:= convert(convert(n,base,10),set);
    S23:= convert(convert(n^2,base,10),set) union
          convert(convert(n^3,base,10),set);
    nops(S1 intersect S23)=0
    end proc:
    select(filter,[$1..10^5]); # Robert Israel, Jul 14 2014
  • Mathematica
    Select[Range@ 1000000, Intersection[IntegerDigits[#^2], IntegerDigits@ #] == {} && Intersection[IntegerDigits[#^3], IntegerDigits@ #] == {} &] (* Michael De Vlieger, Jul 23 2015 *)
  • PARI
    isok(n) = d = vecsort(Set(digits(n))); dd = vecsort(Set(digits(n^2))); ddd = vecsort(Set(digits(n^3))); for (i=1, #d, if (vecsearch(dd, d[i]) || vecsearch(ddd, d[i]), return (0));); 1 \\ Michel Marcus, Jul 13 2014
    
  • PARI
    is(n)=#setintersect(setunion(Set(digits(n^2)),Set(digits(n^3))), Set(digits(n)))==0 \\ Charles R Greathouse IV, Jul 23 2015
  • Python
    def a(n):
      s = str(n)
      s2 = str(n**2)
      s3 = str(n**3)
      count = 0
      for i in s:
        if s2.count(i) == 0 and s3.count(i) == 0:
          count += 1
        else:
          break
      if count == len(s):
        return True
    n = 1
    while n < 10**9:
      if a(n):
        print(n, end=', ')
      n += 1
    # Derek Orr, Jul 13 2014