cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A029793 Numbers k such that k and k^2 have the same set of digits.

Original entry on oeis.org

0, 1, 10, 100, 1000, 4762, 4832, 10000, 10376, 10493, 11205, 12385, 12650, 14829, 22450, 23506, 24605, 26394, 34196, 36215, 47620, 48302, 48320, 49827, 64510, 68474, 71205, 72510, 72576, 74510, 74528, 79286, 79603, 79836, 94583, 94867, 96123, 98376
Offset: 1

Views

Author

Keywords

Comments

This sequence has density 1: almost all numbers k have all 10 digits in both k and k^2. - Franklin T. Adams-Watters, Jun 28 2011

Examples

			{0, 1, 3, 4, 9} = digits of a(10) = 10493 and of 10493^2 = 110103049;
{0, 1, 2, 5, 6} = digits of a(100) = 162025 and of 162025^2 = 26252100625;
{0, 1, 3, 4, 6, 7, 8} = digits of a(1000) = 1764380 and of 1764380^2 = 3113036784400;
{1, 2, 3, 4, 7, 8, 9} = digits of a(10000) = 14872239 and of 14872239^2 = 221183492873121.
		

Crossrefs

Programs

  • Haskell
    import Data.List (nub, sort)
    a029793 n = a029793_list !! (n-1)
    a029793_list = filter (\x -> digs x == digs (x^2)) [0..]
       where digs = sort . nub . show
    -- Reinhard Zumkeller, Jun 27 2011
    
  • Magma
    [ n: n in [0..10^5] | Set(Intseq(n)) eq Set(Intseq(n^2)) ];  // Bruno Berselli, Jun 28 2011
    
  • Maple
    seq(`if`(convert(convert(n,base,10),set) = convert(convert(n^2,base,10),set), n, NULL), n=0..100000); # Nathaniel Johnston, Jun 28 2011
  • Mathematica
    digitSet[n_] := Union[IntegerDigits[n]]; Select[Range[0, 99000], digitSet[#] == digitSet[#^2] &] (* Jayanta Basu, Jun 02 2013 *)
  • PARI
    isA029793(n)=Set(Vec(Str(n)))==Set(Vec(Str(n^2))) \\ Charles R Greathouse IV, Jun 28 2011
    
  • Scala
    (0L to 99999L).filter(n => n.toString.toCharArray.toSet == (n * n).toString.toCharArray.toSet) // Alonso del Arte, Jan 19 2020

A029795 Numbers k such that k and k^3 have the same set of digits.

Original entry on oeis.org

0, 1, 10, 100, 1000, 10000, 100000, 107624, 109573, 132485, 138624, 159406, 165640, 192574, 205738, 215806, 251894, 281536, 318725, 419375, 427863, 568314, 642510, 713960, 953867, 954086, 963218, 965760, 1000000, 1008529, 1023479
Offset: 1

Views

Author

Keywords

Comments

Conjecture: there exists some m and N for which a(n) = m + n for all n >= N. - Charles R Greathouse IV, Jun 28 2011

Examples

			109573^3 = 1315559990715517. Since both numbers use the digits 0, 1, 3, 5, 7, 9, and no others, 109573 is in the sequence.
		

Crossrefs

Programs

  • Magma
    [ n: n in [0..8*10^6] | Set(Intseq(n)) eq Set(Intseq(n^3)) ];  // Bruno Berselli, Jun 28 2011
    
  • Maple
    seq(`if`(convert(convert(n, base, 10), set) = convert(convert(n^3, base, 10), set), n, NULL), n=0..500000); # Nathaniel Johnston, Jun 28 2011
  • Mathematica
    Select[Range[0, 199999], Union[IntegerDigits[#]] == Union[IntegerDigits[#^3]] &] (* Alonso del Arte, Jan 12 2020 *)
  • PARI
    isA029795(n)=Set(Vec(Str(n)))==Set(Vec(Str(n^3))) \\ Charles R Greathouse IV, Jun 28 2011

A029798 Squares k such that k and k^(3/2) have the same set of digits.

Original entry on oeis.org

0, 1, 100, 10000, 21316, 1000000, 1447209, 2131600, 58553104, 65237929, 76580001, 80371225, 100000000, 108284836, 141943396, 144720900, 145371249, 158407396, 163021824, 167987521, 170433025, 201696804
Offset: 1

Views

Author

Keywords

Crossrefs

Formula

a(n) = A029797(n)^2. - Andrew Howroyd, Aug 11 2024

Extensions

Offset corrected by Andrew Howroyd, Aug 11 2024

A029799 Cubes k such that k^(2/3) and k have same digits.

Original entry on oeis.org

0, 1, 1000, 1000000, 3112136, 1000000000, 1740992427, 3112136000, 448048351808, 526926752533, 670151588751, 720528032125, 1000000000000, 1126812003416, 1691113619944, 1740992427000, 1752741149193
Offset: 1

Views

Author

Keywords

Crossrefs

Formula

a(n) = A029797(n)^3. - Andrew Howroyd, Aug 11 2024

Extensions

Offset corrected by Andrew Howroyd, Aug 11 2024
Showing 1-4 of 4 results.