A029795
Numbers k such that k and k^3 have the same set of digits.
Original entry on oeis.org
0, 1, 10, 100, 1000, 10000, 100000, 107624, 109573, 132485, 138624, 159406, 165640, 192574, 205738, 215806, 251894, 281536, 318725, 419375, 427863, 568314, 642510, 713960, 953867, 954086, 963218, 965760, 1000000, 1008529, 1023479
Offset: 1
109573^3 = 1315559990715517. Since both numbers use the digits 0, 1, 3, 5, 7, 9, and no others, 109573 is in the sequence.
-
[ n: n in [0..8*10^6] | Set(Intseq(n)) eq Set(Intseq(n^3)) ]; // Bruno Berselli, Jun 28 2011
-
seq(`if`(convert(convert(n, base, 10), set) = convert(convert(n^3, base, 10), set), n, NULL), n=0..500000); # Nathaniel Johnston, Jun 28 2011
-
Select[Range[0, 199999], Union[IntegerDigits[#]] == Union[IntegerDigits[#^3]] &] (* Alonso del Arte, Jan 12 2020 *)
-
isA029795(n)=Set(Vec(Str(n)))==Set(Vec(Str(n^3))) \\ Charles R Greathouse IV, Jun 28 2011
A178501
Zero followed by powers of ten.
Original entry on oeis.org
0, 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000, 10000000000, 100000000000, 1000000000000, 10000000000000, 100000000000000, 1000000000000000, 10000000000000000, 100000000000000000, 1000000000000000000, 10000000000000000000, 100000000000000000000
Offset: 0
The powers of 10,
A011557, is a subsequence.
A232659
Numbers n such that n and n^4 have the same set of digits.
Original entry on oeis.org
0, 1, 10, 100, 1000, 10000, 35641, 100000, 129486, 146980, 356410, 465780, 1000000, 1059281, 1083749, 1206794, 1239876, 1245890, 1265360, 1294860, 1297853, 1348970, 1469800, 1486920, 1495860, 1567038, 1572086, 1574689, 1956740, 2035817, 2084615, 2114760
Offset: 1
{1, 3, 4, 5, 6} - the set of digits of 35641 and of 35641^4, so 35641 is in the sequence.
-
[n : n in [0..2114760] | Set(Intseq(n)) eq Set(Intseq(n^4))];
-
Select[Range[0,22*10^5],Union[IntegerDigits[#]]== Union[ IntegerDigits[ #^4]]&] (* Harvey P. Dale, Aug 02 2016 *)
-
for(n=0, 2114760, if(Set(Vec(Str(n)))==Set(Vec(Str(n^4))), print1(n, ", ")));
A232662
Numbers n such that n and n^7 have the same set of digits.
Original entry on oeis.org
0, 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 12635940, 26875130, 29851046, 31572460, 36082794, 38625410, 39756810, 42675139, 47025831, 50748936, 58291760, 65279801, 68249735, 76942451, 78952160, 80572614, 100000000, 102359784, 102374865
Offset: 1
{0, 1, 2, 3, 4, 5, 6, 9} - the set of digits of 12635940 and of 12635940^7, so 12635940 is in the sequence.
-
for(n=0, 102374865, if(Set(Vec(Str(n)))==Set(Vec(Str(n^7))), print1(n, ", ")));
A029797
Numbers k such that k^2 and k^3 have the same set of digits.
Original entry on oeis.org
0, 1, 10, 100, 146, 1000, 1203, 1460, 7652, 8077, 8751, 8965, 10000, 10406, 11914, 12030, 12057, 12586, 12768, 12961, 13055, 14202, 14600, 14625, 16221, 19350, 20450, 21539, 22040, 22175, 23682, 24071, 25089, 25201, 25708, 26653, 26981
Offset: 1
146 is in the sequence as 146^2 = 21316 has digits {1, 2, 3, 6} and 146^3 = 3112136 has digits {1, 2, 3, 6} as well. - _David A. Corneth_, Nov 13 2023
A257763
Zeroless numbers n such that n and n^2 have the same set of decimal digits.
Original entry on oeis.org
1, 4762, 4832, 12385, 14829, 26394, 34196, 36215, 49827, 68474, 72576, 74528, 79286, 79836, 94583, 94867, 96123, 98376, 123385, 123546, 124235, 124365, 124579, 124589, 125476, 125478, 126969, 129685, 135438, 139256, 139261, 139756, 149382, 152385, 156242
Offset: 1
4762 is in the sequence because it is zeroless and 4762^2 = 22676644 has the same set of decimal digits as 4762: {2,4,6,7}.
-
a:= proc(n) option remember; local k, s;
for k from 1+`if`(n=1, 0, a(n-1)) do
s:= {convert(k, base, 10)[]};
if not 0 in s and s={convert(k^2, base, 10)[]}
then return k fi
od
end:
seq(a(n), n=1..10);
-
sameQ[n_]:=Union[IntegerDigits[n]]==Union[IntegerDigits[n^2]];Select[Range@156242,And[FreeQ[IntegerDigits[#],0],sameQ[#]]&] (* Ivan N. Ianakiev, May 08 2015 *)
-
isok(n) = vecmin(d=digits(n)) && Set(d) == Set(digits(n^2)); \\ Michel Marcus, May 31 2015
-
A257763_list = [n for n in range(1,10**6) if not '0' in str(n) and set(str(n)) == set(str(n**2))] # Chai Wah Wu, May 31 2015
A257760
Zeroless numbers n such that the products of the decimal digits of n and n^2 coincide.
Original entry on oeis.org
1, 1488, 3381, 14889, 18489, 181965, 262989, 338646, 358489, 367589, 437189, 438329, 479285, 781839, 964941, 1456589, 1763954, 2579285, 2868489, 3365285, 3419389, 3451988, 3584889, 3625619, 4378829, 4653989, 6868877, 7295986, 9548479, 14529839, 14534488
Offset: 1
1488 is in the sequence since 1488^2 = 2214144 and we have 256 = 1*4*8*8 = 2*2*1*4*1*4*4.
3381 is in the sequence because 3381^2 = 11431161 and 72 = 3*3*8*1 = 1*1*4*3*1*1*6*1.
-
fQ[n_] := Times @@ IntegerDigits[n] == Times @@ IntegerDigits[n^2] > 0; Select[ Range@ 10000000, fQ] (* Robert G. Wilson v, May 07 2015 *)
-
isok(n) = (d = digits(n)) && vecmin(d) && (dd = digits(n^2)) && (prod(k=1, #d, d[k]) == prod(k=1, #dd, dd[k])); \\ Michel Marcus, May 07 2015
A232660
Numbers n such that n and n^5 have the same set of digits.
Original entry on oeis.org
0, 1, 10, 100, 1000, 10000, 39568, 100000, 395680, 1000000, 2114325, 2751490, 3246105, 3956800, 4356891, 4768209, 4926051, 6274019, 8021439, 10000000, 10267394, 10352849, 10368279, 10456932, 10478632, 10489723, 10489725, 10527934, 10567293, 10639428, 10827439
Offset: 1
{3, 5, 6, 8, 9} - the set of digits of 39568 and of 39568^5, so 39568 is in the sequence.
-
[n : n in [0..10827439] | Set(Intseq(n)) eq Set(Intseq(n^5))];
-
for(n=0, 10827439, if(Set(Vec(Str(n)))==Set(Vec(Str(n^5))), print1(n, ", ")));
A232661
Numbers n such that n and n^6 have the same set of digits.
Original entry on oeis.org
0, 1, 10, 100, 1000, 10000, 100000, 1000000, 1380796, 10000000, 10423786, 10489362, 10532689, 10689247, 10743958, 12645980, 13042697, 13674925, 13807960, 14205893, 14857690, 16892043, 17284360, 17983256, 19046537, 19754203, 20634971, 20637451, 21865409
Offset: 1
{0, 1, 3, 6, 7, 8, 9} - the set of digits of 1380796 and of 1380796^6, so 1380796 is in the sequence.
-
for(n=0, 21865409, if(Set(Vec(Str(n)))==Set(Vec(Str(n^6))), print1(n, ", ")));
A030091
Primes such that p and p^2 have same set of digits.
Original entry on oeis.org
94583, 100469, 102953, 107251, 110923, 184903, 279863, 285101, 406951, 459521, 493621, 499423, 504821, 684581, 752681, 758141, 758941, 786431, 836291, 843701, 928637, 976513, 980261, 1008947, 1009859, 1024399, 1029647
Offset: 1
-
import Data.List (nub, sort)
import Data.Function (on)
a030091 n = a030091_list !! (n-1)
a030091_list =
filter (\x -> ((==) `on` (nub . sort . show)) x (x^2)) a000040_list
-- Reinhard Zumkeller, Aug 11 2011
-
Select[Prime[Range[82000]],Union[IntegerDigits[#]]== Union[ IntegerDigits [#^2]]&] (* Harvey P. Dale, Aug 12 2011 *)
-
isA030091(n)=isprime(n)&&Set(Vec(Str(n)))==Set(Vec(Str(n^2))) \\ Charles R Greathouse IV, Jun 28 2011
Showing 1-10 of 18 results.
Comments