cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A029898 Pitoun's sequence: a(n+1) is digital root of a(0) + ... + a(n).

Original entry on oeis.org

1, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2
Offset: 0

Views

Author

Amela2(AT)aol.com

Keywords

Comments

If the initial 1 is omitted, this is 2^n mod 9. - N. J. A. Sloane
From Cino Hilliard, Dec 31 2004: (Start)
Except for the initial term, also the digital root of 11^n.
Except for the initial term, also the decimal expansion of 125/1001.
Except for the initial term, also the digital root of 2^n. (End)
Aside from the first term, periodic with period 6. - Charles R Greathouse IV, Nov 29 2011

Examples

			1 + 1 + 2 + 4 + 8 + 7 + 5 = 28 -> 2 + 8 = 10 -> a(7) = 1.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := PowerMod[2, n-1, 9]; a[0] = 1; Table[a[n], {n, 0, 104}] (* Jean-François Alcover, Nov 29 2011 *)
    Join[{1},LinearRecurrence[{1,0,-1,1},{1,2,4,8},110]] (* or *) Join[{1}, PowerMod[2,Range[110],9]] (* Harvey P. Dale, Nov 24 2014 *)
  • PARI
    a(n)=if(n,[5,1,2,4,8,7][n%6+1],1) \\ Charles R Greathouse IV, Nov 29 2011
  • Sage
    [power_mod(2,n,9)for n in range(0, 105)] # Zerinvary Lajos, Nov 03 2009
    

Formula

a(n) = digital root of 2^(n-1) in base 10 = 2^(n-1) (mod 9). - Olivier Gérard, Jun 06 2001
For n > 0: a(n+6) = a(n) and a(n) = A007612(n+1) - A007612(n) = A010888(A007612(n)). - Reinhard Zumkeller, Feb 27 2006
a(n) = (9 + cos(n*Pi) - 4*sqrt(3)*sin(n*Pi/3))/2 for n > 0 with a(0)=1. - Wesley Ivan Hurt, Oct 04 2018
From Stefano Spezia, Jun 27 2022: (Start)
O.g.f.: (1 + x^2 + 3*x^3 + 4*x^4)/((1 - x)*(1 + x)*(1 - x + x^2)).
E.g.f.: 5*cosh(x) - 2*sqrt(3)*exp(x/2)*sin(sqrt(3)*x/2) + 4*(sinh(x) - 1). (End)

Extensions

More terms from Cino Hilliard, Dec 31 2004