cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A029941 Number of symmetric types of (4,2n)-hypergraphs under action of complementing group C(4,2).

Original entry on oeis.org

1, 15, 50, 225, 590, 1485, 3130, 6435, 11931, 21450, 36220, 59670, 94140, 145350, 217500, 319770, 458981, 648945, 900350, 1233375, 1663850, 2220075, 2924870, 3817125, 4928511, 6310980, 8007640, 10086780, 12605560, 15651900, 19300440, 23662980, 28835081
Offset: 0

Views

Author

Vladeta Jovovic, Jul 13 2000

Keywords

Comments

The first g.f. gives a 0 between each two terms of the sequence - Colin Barker, Jul 12 2013

Crossrefs

Cf. A051502.

Programs

  • Mathematica
    CoefficientList[Series[(9 x^12 - 21 x^11 + 26 x^10 + 121 x^9 - 149 x^8 + 132 x^7 + 20 x^6 + 68 x^5 - 61 x^4 + 89 x^3 - 6 x^2 + 11 x + 1)/((x - 1)^8 (x + 1)^4 (x^2 + 1)^2 (x^4 + 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Oct 19 2013 *)
    LinearRecurrence[{4,-4,-4,11,-8,0,8,-10,0,8,0,-10,8,0,-8,11,-4,-4,4,-1},{1,15,50,225,590,1485,3130,6435,11931,21450,36220,59670,94140,145350,217500,319770,458981,648945,900350,1233375},40] (* Harvey P. Dale, Aug 14 2021 *)

Formula

G.f.: (30/(1-x^2)^8-70/(1-x^4)^4+120/(1-x^8)^2-64/(1-x^16))/16.
G.f.: (9*x^12 -21*x^11 +26*x^10 +121*x^9 -149*x^8 +132*x^7 +20*x^6 +68*x^5 -61*x^4 +89*x^3 -6*x^2 +11*x +1) / ((x-1)^8 *(x+1)^4 *(x^2+1)^2 *(x^4+1)). - Colin Barker, Jul 12 2013
a(n) = 4*a(n-1)-4*a(n-2)-4*a(n-3)+11*a(n-4)-8*a(n-5)+8*a(n-7)-10*a(n-8)+8*a(n-10)-10*a(n-12)+8*a(n-13)-8*a(n-15)+11*a(n-16)-4*a(n-17)-4*a(n-18)+4*a(n-19)-a(n-20). - Wesley Ivan Hurt, May 24 2021

Extensions

More terms from James Sellers, Aug 08 2000
More terms from Colin Barker, Jul 12 2013