A029941 Number of symmetric types of (4,2n)-hypergraphs under action of complementing group C(4,2).
1, 15, 50, 225, 590, 1485, 3130, 6435, 11931, 21450, 36220, 59670, 94140, 145350, 217500, 319770, 458981, 648945, 900350, 1233375, 1663850, 2220075, 2924870, 3817125, 4928511, 6310980, 8007640, 10086780, 12605560, 15651900, 19300440, 23662980, 28835081
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-4,-4,11,-8,0,8,-10,0,8,0,-10,8,0,-8,11,-4,-4,4,-1).
Crossrefs
Cf. A051502.
Programs
-
Mathematica
CoefficientList[Series[(9 x^12 - 21 x^11 + 26 x^10 + 121 x^9 - 149 x^8 + 132 x^7 + 20 x^6 + 68 x^5 - 61 x^4 + 89 x^3 - 6 x^2 + 11 x + 1)/((x - 1)^8 (x + 1)^4 (x^2 + 1)^2 (x^4 + 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Oct 19 2013 *) LinearRecurrence[{4,-4,-4,11,-8,0,8,-10,0,8,0,-10,8,0,-8,11,-4,-4,4,-1},{1,15,50,225,590,1485,3130,6435,11931,21450,36220,59670,94140,145350,217500,319770,458981,648945,900350,1233375},40] (* Harvey P. Dale, Aug 14 2021 *)
Formula
G.f.: (30/(1-x^2)^8-70/(1-x^4)^4+120/(1-x^8)^2-64/(1-x^16))/16.
G.f.: (9*x^12 -21*x^11 +26*x^10 +121*x^9 -149*x^8 +132*x^7 +20*x^6 +68*x^5 -61*x^4 +89*x^3 -6*x^2 +11*x +1) / ((x-1)^8 *(x+1)^4 *(x^2+1)^2 *(x^4+1)). - Colin Barker, Jul 12 2013
a(n) = 4*a(n-1)-4*a(n-2)-4*a(n-3)+11*a(n-4)-8*a(n-5)+8*a(n-7)-10*a(n-8)+8*a(n-10)-10*a(n-12)+8*a(n-13)-8*a(n-15)+11*a(n-16)-4*a(n-17)-4*a(n-18)+4*a(n-19)-a(n-20). - Wesley Ivan Hurt, May 24 2021
Extensions
More terms from James Sellers, Aug 08 2000
More terms from Colin Barker, Jul 12 2013
Comments