cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A029952 Palindromic in base 5.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 12, 18, 24, 26, 31, 36, 41, 46, 52, 57, 62, 67, 72, 78, 83, 88, 93, 98, 104, 109, 114, 119, 124, 126, 156, 186, 216, 246, 252, 282, 312, 342, 372, 378, 408, 438, 468, 498, 504, 534, 564, 594, 624, 626, 651, 676, 701, 726, 756, 781, 806, 831
Offset: 1

Views

Author

Keywords

Comments

Cilleruelo, Luca, & Baxter prove that this sequence is an additive basis of order (exactly) 3. - Charles R Greathouse IV, May 03 2020

Crossrefs

Palindromes in bases 2 through 10: A006995, A014190, A014192, A029952, A029953, A029954, A029803, A029955, A002113.

Programs

  • Magma
    [n: n in [0..900] | Intseq(n, 5) eq Reverse(Intseq(n, 5))]; // Vincenzo Librandi, Sep 09 2015
    
  • Maple
    # test for palindrome in base b, from N. J. A. Sloane, Sep 13 2015
    b:=5;
    ispal := proc(n) global b; local t1,t2,i;
    if n <= b-1 then return(1); fi;
    t1:=convert(n,base,b); t2:=nops(t1);
    for i from 1 to floor(t2/2) do
    if t1[i] <> t1[t2+1-1] then return(-1); fi;
    od: return(1); end;
    lis:=[]; for n from 0 to 100 do if ispal(n) = 1 then lis:=[op(lis),n]; fi; od: lis;
  • Mathematica
    f[n_,b_] := Module[{i=IntegerDigits[n,b]}, i==Reverse[i]]; lst={}; Do[If[f[n,5], AppendTo[lst,n]], {n,1000}]; lst (* Vladimir Joseph Stephan Orlovsky, Jul 08 2009 *)
    Select[Range[0,1000],IntegerDigits[#,5]==Reverse[IntegerDigits[#,5]]&] (* Harvey P. Dale, Oct 24 2020 *)
  • PARI
    ispal(n,b=5)=my(d=digits(n,b)); d==Vecrev(d) \\ Charles R Greathouse IV, May 03 2020
    
  • Python
    from gmpy2 import digits
    def A029952(n):
        if n == 1: return 0
        y = 5*(x:=5**(len(digits(n>>1,5))-1))
        return int((c:=n-x)*x+int(digits(c,5)[-2::-1]or'0',5) if nChai Wah Wu, Jun 13 2024

Formula

Sum_{n>=2} 1/a(n) = 2.9200482... (Phunphayap and Pongsriiam, 2019). - Amiram Eldar, Oct 17 2020