cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 29 results. Next

A002113 Palindromes in base 10.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 101, 111, 121, 131, 141, 151, 161, 171, 181, 191, 202, 212, 222, 232, 242, 252, 262, 272, 282, 292, 303, 313, 323, 333, 343, 353, 363, 373, 383, 393, 404, 414, 424, 434, 444, 454, 464, 474, 484, 494, 505, 515
Offset: 1

Views

Author

Keywords

Comments

n is a palindrome (i.e., a(k) = n for some k) if and only if n = A004086(n). - Reinhard Zumkeller, Mar 10 2002
It seems that if n*reversal(n) is in the sequence then n = 3 or all digits of n are less than 3. - Farideh Firoozbakht, Nov 02 2014
The position of a palindrome within the sequence can be determined almost without calculation: If the palindrome has an even number of digits, prepend a 1 to the front half of the palindrome's digits. If the number of digits is odd, prepend the value of front digit + 1 to the digits from position 2 ... central digit. Examples: 98766789 = a(19876), 515 = a(61), 8206028 = a(9206), 9230329 = a(10230). - Hugo Pfoertner, Aug 14 2015
This sequence is an additive basis of order at most 49, see Banks link. - Charles R Greathouse IV, Aug 23 2015
The order has been reduced from 49 to 3; see the Cilleruelo-Luca and Cilleruelo-Luca-Baxter links. - Jonathan Sondow, Nov 27 2017
See A262038 for the "next palindrome" and A261423 for the "preceding palindrome" functions. - M. F. Hasler, Sep 09 2015
The number of palindromes with d digits is 10 if d = 1, and otherwise it is 9 * 10^(floor((d - 1)/2)). - N. J. A. Sloane, Dec 06 2015
Sequence A033665 tells how many iterations of the Reverse-then-add function A056964 are needed to reach a palindrome; numbers for which this will never happen are Lychrel numbers (A088753) or rather Kin numbers (A023108). - M. F. Hasler, Apr 13 2019
This sequence is an additive basis of order 3, see Cilleruelo, Luca, & Baxter and Sigg. - Charles R Greathouse IV, Apr 08 2025

References

  • Karl G. Kröber, "Palindrome, Perioden und Chaoten: 66 Streifzüge durch die palindromischen Gefilde" (1997, Deutsch-Taschenbücher; Bd. 99) ISBN 3-8171-1522-9.
  • Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 71.
  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, pages 50-52.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 120.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Subsequence of A061917 and A221221.
A110745 is a subsequence.
Union of A056524 and A056525.
Palindromes in bases 2 through 11: A006995 and A057148, A014190 and A118594, A014192 and A118595, A029952 and A118596, A029953 and A118597, A029954 and A118598, A029803 and A118599, A029955 and A118600, this sequence, A029956. Also A262065 (base 60), A262069 (subsequence).
Palindromic primes: A002385. Palindromic nonprimes: A032350.
Palindromic-pi: A136687.
Cf. A029742 (complement), A086862 (first differences).
Palindromic floor function: A261423, also A261424. Palindromic ceiling: A262038.
Cf. A004086 (read n backwards), A064834, A118031, A136522 (characteristic function), A178788.
Ways to write n as a sum of three palindromes: A261132, A261422.
Minimal number of palindromes that add to n using greedy algorithm: A088601.
Minimal number of palindromes that add to n: A261675.

Programs

  • GAP
    Filtered([0..550],n->ListOfDigits(n)=Reversed(ListOfDigits(n))); # Muniru A Asiru, Mar 08 2019
    
  • Haskell
    a002113 n = a002113_list !! (n-1)
      a002113_list = filter ((== 1) . a136522) [1..] -- Reinhard Zumkeller, Oct 09 2011
    
  • Haskell
    import Data.List.Ordered (union)
      a002113_list = union a056524_list a056525_list -- Reinhard Zumkeller, Jul 29 2015, Dec 28 2011
    
  • Magma
    [n: n in [0..600] | Intseq(n, 10) eq Reverse(Intseq(n, 10))]; // Vincenzo Librandi, Nov 03 2014
    
  • Maple
    read transforms; t0:=[]; for n from 0 to 2000 do if digrev(n) = n then t0:=[op(t0),n]; fi; od: t0;
    # Alternatively, to get all palindromes with <= N digits in the list "Res":
    N:=5;
    Res:= $0..9:
    for d from 2 to N do
      if d::even then
        m:= d/2;
        Res:= Res, seq(n*10^m + digrev(n),n=10^(m-1)..10^m-1);
      else
        m:= (d-1)/2;
        Res:= Res, seq(seq(n*10^(m+1)+y*10^m+digrev(n),y=0..9),n=10^(m-1)..10^m-1);
      fi
    od: Res:=[Res]: # Robert Israel, Aug 10 2014
    # A variant: Gets all base-10 palindromes with exactly d digits, in the list "Res"
    d:=4:
    if d=1 then Res:= [$0..9]:
    elif d::even then
        m:= d/2:
        Res:= [seq(n*10^m + digrev(n), n=10^(m-1)..10^m-1)]:
    else
        m:= (d-1)/2:
        Res:= [seq(seq(n*10^(m+1)+y*10^m+digrev(n), y=0..9), n=10^(m-1)..10^m-1)]:
    fi:
    Res; # N. J. A. Sloane, Oct 18 2015
    isA002113 := proc(n)
        simplify(digrev(n) = n) ;
    end proc: # R. J. Mathar, Sep 09 2015
  • Mathematica
    palQ[n_Integer, base_Integer] := Module[{idn = IntegerDigits[n, base]}, idn == Reverse[idn]]; (* then to generate any base-b sequence for 1 < b < 37, replace the 10 in the following instruction with b: *) Select[Range[0, 1000], palQ[#, 10] &]
    base10Pals = {0}; r = 2; Do[Do[AppendTo[base10Pals, n * 10^(IntegerLength[n] - 1) + FromDigits@Rest@Reverse@IntegerDigits[n]], {n, 10^(e - 1), 10^e - 1}]; Do[AppendTo[base10Pals, n * 10^IntegerLength[n] + FromDigits@Reverse@IntegerDigits[n]], {n, 10^(e - 1), 10^e - 1}], {e, r}]; base10Pals (* Arkadiusz Wesolowski, May 04 2012 *)
    nthPalindromeBase[n_, b_] := Block[{q = n + 1 - b^Floor[Log[b, n + 1 - b^Floor[Log[b, n/b]]]], c = Sum[Floor[Floor[n/((b + 1) b^(k - 1) - 1)]/(Floor[n/((b + 1) b^(k - 1) - 1)] - 1/b)] - Floor[Floor[n/(2 b^k - 1)]/(Floor[n/(2 b^k - 1)] - 1/ b)], {k, Floor[Log[b, n]]}]}, Mod[q, b] (b + 1)^c * b^Floor[Log[b, q]] + Sum[Floor[Mod[q, b^(k + 1)]/b^k] b^(Floor[Log[b, q]] - k) (b^(2 k + c) + 1), {k, Floor[Log[b, q]]}]] (* after the work of Eric A. Schmidt, works for all integer bases b > 2 *)
    Array[nthPalindromeBase[#, 10] &, 61, 0] (* please note that Schmidt uses a different, a more natural and intuitive offset, that of a(1) = 1. - Robert G. Wilson v, Sep 22 2014 and modified Nov 28 2014 *)
    Select[Range[10^3], PalindromeQ] (* Michael De Vlieger, Nov 27 2017 *)
    nLP[cn_Integer]:=Module[{s,len,half,left,pal,fdpal},s=IntegerDigits[cn]; len=Length[s]; half=Ceiling[len/2]; left=Take[s,half]; pal=Join[left,Reverse[ Take[left,Floor[len/2]]]]; fdpal=FromDigits[pal]; Which[cn==9,11,fdpal>cn,fdpal,True,left=IntegerDigits[ FromDigits[left]+1]; pal=Join[left,Reverse[Take[left,Floor[len/2]]]]; FromDigits[pal]]]; NestList[nLP,0,100] (* Harvey P. Dale, Dec 10 2024 *)
  • PARI
    is_A002113(n)=Vecrev(n=digits(n))==n \\ M. F. Hasler, Nov 17 2008, updated Apr 26 2014, Jun 19 2018
    
  • PARI
    is(n)=n=digits(n);for(i=1,#n\2,if(n[i]!=n[#n+1-i],return(0))); 1 \\ Charles R Greathouse IV, Jan 04 2013
    
  • PARI
    a(n)={my(d,i,r);r=vector(#digits(n-10^(#digits(n\11)))+#digits(n\11));n=n-10^(#digits(n\11));d=digits(n);for(i=1,#d,r[i]=d[i];r[#r+1-i]=d[i]);sum(i=1,#r,10^(#r-i)*r[i])} \\ David A. Corneth, Jun 06 2014
    
  • PARI
    \\ recursive--feed an element a(n) and it gives a(n+1)
    nxt(n)=my(d=digits(n));i=(#d+1)\2;while(i&&d[i]==9,d[i]=0;d[#d+1-i]=0;i--);if(i,d[i]++;d[#d+1-i]=d[i],d=vector(#d+1);d[1]=d[#d]=1);sum(i=1,#d,10^(#d-i)*d[i]) \\ David A. Corneth, Jun 06 2014
    
  • PARI
    \\ feed a(n), returns n.
    inv(n)={my(d=digits(n));q=ceil(#d/2);sum(i=1,q,10^(q-i)*d[i])+10^floor(#d/2)} \\ David A. Corneth, Jun 18 2014
    
  • PARI
    inv_A002113(P)={P\(P=10^(logint(P+!P,10)\/2))+P} \\ index n of palindrome P = a(n), much faster than above: no sum is needed. - M. F. Hasler, Sep 09 2018
    
  • PARI
    A002113(n,L=logint(n,10))=(n-=L=10^max(L-(n<11*10^(L-1)),0))*L+fromdigits(Vecrev(digits(if(nM. F. Hasler, Sep 11 2018
    
  • Python
    # edited by M. F. Hasler, Jun 19 2018
    def A002113_list(nMax):
      mlist=[]
      for n in range(nMax+1):
         mstr=str(n)
         if mstr==mstr[::-1]:
            mlist.append(n)
      return mlist # Bill McEachen, Dec 17 2010
    
  • Python
    from itertools import chain
    A002113 = sorted(chain(map(lambda x:int(str(x)+str(x)[::-1]),range(1,10**3)),map(lambda x:int(str(x)+str(x)[-2::-1]), range(10**3)))) # Chai Wah Wu, Aug 09 2014
    
  • Python
    from itertools import chain, count
    A002113 = chain(k for k in count(0) if str(k) == str(k)[::-1])
    print([next(A002113) for k in range(60)]) # Jan P. Hartkopf, Apr 10 2021
    
  • Python
    is_A002113 = lambda n: (s:=str(n))[::-1]==s # M. F. Hasler, May 23 2024
    
  • Python
    from math import log10, floor
    def A002113(n):
      if n < 2: return 0
      P = 10**floor(log10(n//2)); M = 11*P
      s = str(n - (P if n < M else M-P))
      return int(s + s[-2 if n < M else -1::-1]) # M. F. Hasler, Jun 06 2024
    
  • SageMath
    [n for n in (0..515) if Word(n.digits()).is_palindrome()] # Peter Luschny, Sep 13 2018
    
  • Scala
    def palQ(n: Int, b: Int = 10): Boolean = n - Integer.parseInt(n.toString.reverse) == 0
    (0 to 999).filter(palQ()) // _Alonso del Arte, Nov 10 2019

Formula

A136522(a(n)) = 1.
A178788(a(n)) = 0 for n > 9. - Reinhard Zumkeller, Jun 30 2010
A064834(a(n)) = 0. - Reinhard Zumkeller, Sep 18 2013
a(n+1) = A262038(a(n)+1). - M. F. Hasler, Sep 09 2015
Sum_{n>=2} 1/a(n) = A118031. - Amiram Eldar, Oct 17 2020
a(n) = (floor(d(n)/(c(n)*9 + 1)))*10^A055642(d(n)) + A004086(d(n)) where b(n, k) = ceiling(log((n + 1)/k)/log(10)), c(n) = b(n, 2) - b(n, 11) and d(n) = (n - A086573(b(n*(2 - c(n)), 2) - 1)/2 - 1). - Alan Michael Gómez Calderón, Mar 11 2025

A014190 Palindromes in base 3 (written in base 10).

Original entry on oeis.org

0, 1, 2, 4, 8, 10, 13, 16, 20, 23, 26, 28, 40, 52, 56, 68, 80, 82, 91, 100, 112, 121, 130, 142, 151, 160, 164, 173, 182, 194, 203, 212, 224, 233, 242, 244, 280, 316, 328, 364, 400, 412, 448, 484, 488, 524, 560, 572, 608, 644, 656, 692, 728, 730, 757
Offset: 1

Views

Author

Keywords

Comments

Rajasekaran, Shallit, & Smith prove that this sequence is an additive basis of order (exactly) 3. - Charles R Greathouse IV, May 03 2020

Crossrefs

Cf. A007089, A118594, A134027, A330312 (first differences).
Palindromes in bases 2 through 10: A006995, A014190, A014192, A029952, A029953, A029954, A029803, A029955, A002113.

Programs

  • Magma
    [n: n in [0..800] | Intseq(n, 3) eq Reverse(Intseq(n, 3))]; // Vincenzo Librandi, Sep 09 2015
    
  • Maple
    isA014190 := proc(n)
        local L;
        L := convert(n,base,3) ;
        ListTools[Reverse](L) = L ;
    end proc:
    for n from 0 to 500 do
        if isA014190(n) then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, Jul 07 2015
  • Mathematica
    f[n_,b_] := Module[{i=IntegerDigits[n,b]}, i==Reverse[i]]; lst={}; Do[If[f[n,3], AppendTo[lst,n]], {n,1000}]; lst (* Vladimir Joseph Stephan Orlovsky, Jul 08 2009 *)
  • PARI
    ispal(n,b=3)=my(d=digits(n,b)); d==Vecrev(d) \\ Charles R Greathouse IV, May 03 2020
    
  • Python
    from gmpy2 import digits
    def A014190(n):
        if n == 1: return 0
        y = 3*(x:=3**(len(digits(n>>1,3))-1))
        return int((c:=n-x)*x+int(digits(c,3)[-2::-1]or'0',3) if nChai Wah Wu, Jun 13 2024
  • Sage
    [n for n in (0..757) if Word(n.digits(3)).is_palindrome()] # Peter Luschny, Sep 13 2018
    

Formula

Sum_{n>=2} 1/a(n) = 2.61676111... (Phunphayap and Pongsriiam, 2019). - Amiram Eldar, Oct 17 2020

A029803 Numbers that are palindromic in base 8.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 9, 18, 27, 36, 45, 54, 63, 65, 73, 81, 89, 97, 105, 113, 121, 130, 138, 146, 154, 162, 170, 178, 186, 195, 203, 211, 219, 227, 235, 243, 251, 260, 268, 276, 284, 292, 300, 308, 316, 325, 333, 341, 349, 357, 365, 373, 381, 390, 398
Offset: 1

Views

Author

Keywords

Comments

Cilleruelo, Luca, & Baxter prove that this sequence is an additive basis of order (exactly) 3. - Charles R Greathouse IV, May 03 2020

Crossrefs

Palindromes in bases 2 through 10: A006995, A014190, A014192, A029952, A029953, A029954, A029803, A029955, A002113.

Programs

  • Mathematica
    f[n_,b_] := Module[{i=IntegerDigits[n,b]}, i==Reverse[i]]; lst={}; Do[If[f[n,8], AppendTo[lst,n]], {n,1000}]; lst (* Vladimir Joseph Stephan Orlovsky, Jul 08 2009 *)
  • PARI
    ispal(n,b=8)=my(d=digits(n,b)); d==Vecrev(d) \\ Charles R Greathouse IV, May 03 2020
    
  • Python
    from itertools import chain, count, islice
    def A029803_gen(): # generator of terms
        return chain((0,),chain.from_iterable(chain((int((s:=oct(d)[2:])+s[-2::-1],8) for d in range(8**l,8**(l+1))), (int((s:=oct(d)[2:])+s[::-1],8) for d in range(8**l,8**(l+1)))) for l in count(0)))
    A029803_list = list(islice(A029803_gen(),20)) # Chai Wah Wu, Jun 23 2022
    
  • Python
    def A029803(n):
        if n == 1: return 0
        y = (x:=1<<(m:=n.bit_length()-2)-m%3)<<3
        return (c:=n-x)*x+int(oct(c)[-2:1:-1]or'0',8) if nChai Wah Wu, Jun 13 2024

Formula

Sum_{n>=2} 1/a(n) = 3.2188878... (Phunphayap and Pongsriiam, 2019). - Amiram Eldar, Oct 17 2020

A029955 Palindromic in base 9.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 20, 30, 40, 50, 60, 70, 80, 82, 91, 100, 109, 118, 127, 136, 145, 154, 164, 173, 182, 191, 200, 209, 218, 227, 236, 246, 255, 264, 273, 282, 291, 300, 309, 318, 328, 337, 346, 355, 364, 373, 382, 391, 400, 410, 419, 428, 437
Offset: 1

Views

Author

Keywords

Comments

Cilleruelo, Luca, & Baxter prove that this sequence is an additive basis of order (exactly) 3. - Charles R Greathouse IV, May 03 2020

Crossrefs

Palindromes in bases 2 through 10: A006995, A014190, A014192, A029952, A029953, A029954, A029803, A029955, A002113.

Programs

  • Mathematica
    f[n_,b_] := Module[{i=IntegerDigits[n,b]}, i==Reverse[i]]; lst={}; Do[If[f[n,9], AppendTo[lst,n]], {n,1000}]; lst (* Vladimir Joseph Stephan Orlovsky, Jul 08 2009 *)
  • PARI
    ispal(n,b=9)=my(d=digits(n,b)); d==Vecrev(d) \\ Charles R Greathouse IV, May 03 2020
  • Python
    from gmpy2 import digits
    def palQgen(l,b): # generator of palindromes in base b of length <= 2*l
        if l > 0:
            yield 0
            for x in range(1,l+1):
                for y in range(b**(x-1),b**x):
                    s = digits(y,b)
                    yield int(s+s[-2::-1],b)
                for y in range(b**(x-1),b**x):
                    s = digits(y,b)
                    yield int(s+s[::-1],b)
    A029955_list = list(palQgen(4,9)) # Chai Wah Wu, Dec 01 2014
    
  • Python
    from gmpy2 import digits
    def A029955(n):
        if n == 1: return 0
        y = 9*(x:=9**(len(digits(n>>1,9))-1))
        return int((c:=n-x)*x+int(digits(c,9)[-2::-1]or'0',9) if nChai Wah Wu, Jun 14 2024
    

Formula

Sum_{n>=2} 1/a(n) = 3.29797695... (Phunphayap and Pongsriiam, 2019). - Amiram Eldar, Oct 17 2020

A014192 Palindromes in base 4 (written in base 10).

Original entry on oeis.org

0, 1, 2, 3, 5, 10, 15, 17, 21, 25, 29, 34, 38, 42, 46, 51, 55, 59, 63, 65, 85, 105, 125, 130, 150, 170, 190, 195, 215, 235, 255, 257, 273, 289, 305, 325, 341, 357, 373, 393, 409, 425, 441, 461, 477, 493, 509, 514, 530, 546, 562, 582, 598, 614, 630, 650, 666
Offset: 1

Views

Author

Keywords

Comments

Rajasekaran, Shallit, & Smith prove that this sequence is an additive basis of order (exactly) 3. - Charles R Greathouse IV, May 03 2020

Crossrefs

Palindromes in bases 2 through 10: A006995, A014190, A014192, A029952, A029953, A029954, A029803, A029955, A002113.

Programs

  • Magma
    [n: n in [0..800] | Intseq(n, 4) eq Reverse(Intseq(n, 4))]; // Vincenzo Librandi, Sep 09 2015
    
  • Mathematica
    f[n_,b_] := Module[{i=IntegerDigits[n,b]}, i==Reverse[i]]; lst={}; Do[If[f[n,4], AppendTo[lst,n]], {n,1000}]; lst (* Vladimir Joseph Stephan Orlovsky, Jul 08 2009 *)
    pal4Q[n_]:=Module[{c=IntegerDigits[n,4]},c==Reverse[c]]; Select[Range[ 0,700],pal4Q] (* Harvey P. Dale, Jul 21 2020 *)
  • PARI
    ispal(n,b=4)=my(d=digits(n,b)); d==Vecrev(d) \\ Charles R Greathouse IV, May 03 2020
    
  • Python
    from gmpy2 import digits
    def A014192(n):
        if n == 1: return 0
        y = (x:=1<<(n.bit_length()-2&-2))<<2
        return (c:=n-x)*x+int(digits(c,4)[-2::-1]or'0',4) if nChai Wah Wu, Jun 14 2024

Formula

Sum_{n>=2} 1/a(n) = 2.7857715... (Phunphayap and Pongsriiam, 2019). - Amiram Eldar, Oct 17 2020

Extensions

More terms from Patrick De Geest

A029954 Palindromic in base 7.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 8, 16, 24, 32, 40, 48, 50, 57, 64, 71, 78, 85, 92, 100, 107, 114, 121, 128, 135, 142, 150, 157, 164, 171, 178, 185, 192, 200, 207, 214, 221, 228, 235, 242, 250, 257, 264, 271, 278, 285, 292, 300, 307, 314, 321, 328, 335, 342, 344, 400, 456
Offset: 1

Views

Author

Keywords

Comments

Cilleruelo, Luca, & Baxter prove that this sequence is an additive basis of order (exactly) 3. - Charles R Greathouse IV, May 03 2020

Crossrefs

Palindromes in bases 2 through 10: A006995, A014190, A014192, A029952, A029953, A029954, A029803, A029955, A002113.

Programs

  • Mathematica
    f[n_,b_] := Module[{i=IntegerDigits[n,b]}, i==Reverse[i]]; lst={}; Do[If[f[n,7], AppendTo[lst,n]], {n,1000}]; lst (* Vladimir Joseph Stephan Orlovsky, Jul 08 2009 *)
    pal7Q[n_]:=Module[{idn7=IntegerDigits[n,7]},idn7==Reverse[idn7]]; Select[ Range[0,500],pal7Q] (* Harvey P. Dale, Jul 30 2015 *)
  • PARI
    ispal(n,b=7)=my(d=digits(n,b)); d==Vecrev(d) \\ Charles R Greathouse IV, May 03 2020
  • Python
    from gmpy2 import digits
    def palQgen(l,b): # generator of palindromes in base b of length <= 2*l
        if l > 0:
            yield 0
            for x in range(1,l+1):
                for y in range(b**(x-1),b**x):
                    s = digits(y,b)
                    yield int(s+s[-2::-1],b)
                for y in range(b**(x-1),b**x):
                    s = digits(y,b)
                    yield int(s+s[::-1],b)
    A029954_list = list(palQgen(4,7)) # Chai Wah Wu, Dec 01 2014
    
  • Python
    from gmpy2 import digits
    from sympy import integer_log
    def A029954(n):
        if n == 1: return 0
        y = 7*(x:=7**integer_log(n>>1,7)[0])
        return int((c:=n-x)*x+int(digits(c,7)[-2::-1]or'0',7) if nChai Wah Wu, Jun 14 2024
    

Formula

Sum_{n>=2} 1/a(n) = 3.1313768... (Phunphayap and Pongsriiam, 2019). - Amiram Eldar, Oct 17 2020

A029953 Palindromic in base 6.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 7, 14, 21, 28, 35, 37, 43, 49, 55, 61, 67, 74, 80, 86, 92, 98, 104, 111, 117, 123, 129, 135, 141, 148, 154, 160, 166, 172, 178, 185, 191, 197, 203, 209, 215, 217, 259, 301, 343, 385, 427, 434, 476, 518, 560, 602, 644, 651, 693, 735, 777, 819
Offset: 1

Views

Author

Keywords

Comments

Cilleruelo, Luca, & Baxter prove that this sequence is an additive basis of order (exactly) 3. - Charles R Greathouse IV, May 03 2020

Crossrefs

Palindromes in bases 2 through 10: A006995, A014190, A014192, A029952, A029953, A029954, A029803, A029955, A002113.

Programs

  • Magma
    [n: n in [0..900] | Intseq(n, 6) eq Reverse(Intseq(n, 6))]; // Vincenzo Librandi, Sep 09 2015
    
  • Mathematica
    f[n_,b_] := Module[{i=IntegerDigits[n,b]}, i==Reverse[i]]; lst={}; Do[If[f[n,6], AppendTo[lst,n]], {n,1000}]; lst (* Vladimir Joseph Stephan Orlovsky, Jul 08 2009 *)
  • PARI
    ispal(n,b=6)=my(d=digits(n,b)); d==Vecrev(d) \\ Charles R Greathouse IV, May 03 2020
    
  • Python
    from gmpy2 import digits
    from sympy import integer_log
    def A029953(n):
        if n == 1: return 0
        y = 6*(x:=6**integer_log(n>>1,6)[0])
        return int((c:=n-x)*x+int(digits(c,6)[-2::-1]or'0',6) if nChai Wah Wu, Jun 14 2024

Formula

Sum_{n>=2} 1/a(n) = 3.03303318... (Phunphayap and Pongsriiam, 2019). - Amiram Eldar, Oct 17 2020

A097929 Numbers in base 10 that are palindromic in bases 4 and 5.

Original entry on oeis.org

0, 1, 2, 3, 46, 9222, 76449, 193662, 2347506, 2593206, 17099841, 17402241, 25651017, 32317933, 16516113567, 16619231967, 155784877126, 2806999337418, 3101308506654, 37004798195346, 47470618709562, 48517516968462
Offset: 1

Views

Author

Cino Hilliard, Sep 04 2004

Keywords

Comments

Intersection of A014192 and A029952. - Michel Marcus, Oct 09 2014

Examples

			9222 base 10 is 2100012 base 4 and 9222 base 10 is 243342 base 5.
		

Crossrefs

Cf. A014192 (base 4), A029952 (base 5).

Programs

  • Mathematica
    Do[ p4 = IntegerDigits[n, 4]; If[ FromDigits[ Reverse[ p4]] == FromDigits[p4], p5 = IntegerDigits[n, 5]; If[ FromDigits[ Reverse[p5]] == FromDigits[p5], Print[n]]], {n, 2*10^7}] (* Robert G. Wilson v, Sep 07 2004 *)
  • PARI
    /* Requires reading the util.gp file in the link into the gp session. */
    palbase(n,b1,b2) = { for(x=1,n, if(ispal(base(10,b1,x))& ispal(base(10,b2,x)),print1(x",")) ) }

Extensions

More terms from Robert G. Wilson v, Sep 07 2004
a(15)-a(22) from Donovan Johnson, Apr 23 2010

A097930 Numbers in base 10 that are palindromic in bases 5 and 6.

Original entry on oeis.org

0, 1, 2, 3, 4, 67, 98, 104, 651, 2293, 3074, 26691, 27741, 704396, 723296, 755846, 883407, 48616624, 295979506, 297379006, 402327541, 198522549056, 204185363456, 240971251611, 246467321391, 303520083621, 330347455102
Offset: 1

Views

Author

Cino Hilliard, Sep 04 2004

Keywords

Comments

Intersection of A029952 and A029953. - Michel Marcus, Oct 09 2014

Examples

			27741_10 = 1341431_5;
27741_10 = 332233_6.
		

Crossrefs

Cf. A029952 (base 5), A029953 (base 6).

Programs

  • Mathematica
    Do[ p5 = IntegerDigits[n, 5]; If[ FromDigits[ Reverse[ p5]] == FromDigits[p5], p6 = IntegerDigits[n, 6]; If[ FromDigits[ Reverse[p6]] == FromDigits[p6], Print[n]]], {n, 10^8}] (* Robert G. Wilson v, Sep 07 2004 *)
  • PARI
    /* Requires reading the util.gp file in the link into the gp session. */
    palbase(n,b1,b2) = { for(x=1,n, if(ispal(base(10,b1,x))& ispal(base(10,b2,x)),print1(x",")) ) }

Extensions

More terms from Robert G. Wilson v, Sep 07 2004
a(19)-a(27) from Donovan Johnson, Apr 23 2010
a(28) from Robert G. Wilson v, Jul 17 2015

A249156 Palindromic in bases 5 and 7.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 24, 57, 78, 114, 342, 624, 856, 1432, 10308, 12654, 27616, 100056, 537856, 593836, 769621, 1434168, 1473368, 1636104, 1823544, 1862744, 17968646, 18108296, 22412057, 34713713, 34853363, 39280254, 159690408, 663706192
Offset: 1

Views

Author

Ray Chandler, Oct 27 2014

Keywords

Comments

Intersection of A029952 and A029954.

Examples

			114 is a term since 114 = 424 base 5 and 114 = 222 base 7.
		

Crossrefs

Programs

  • Mathematica
    palQ[n_Integer,base_Integer]:=Block[{idn=IntegerDigits[n,base]},idn==Reverse[idn]];Select[Range[10^6]-1,palQ[#,5]&&palQ[#,7]&]
  • PARI
    isok(n) = my(df = digits(n, 5), ds = digits(n, 7)); (Vecrev(df)==df) && (Vecrev(ds)==ds); \\ Michel Marcus, Oct 31 2017
  • Python
    from gmpy2 import digits
    def palQ(n,b): # check if n is a palindrome in base b
        s = digits(n,b)
        return s == s[::-1]
    def palQgen(l,b): # unordered generator of palindromes in base b of length <= 2*l
        if l > 0:
            yield 0
            for x in range(1,b**l):
                s = digits(x,b)
                yield int(s+s[-2::-1],b)
                yield int(s+s[::-1],b)
    A249156_list = sorted([n for n in palQgen(8,5) if palQ(n,7)]) # Chai Wah Wu, Nov 25 2014
    
Showing 1-10 of 29 results. Next