A030098 Squares whose digits are all even.
0, 4, 64, 400, 484, 4624, 6084, 6400, 8464, 26244, 28224, 40000, 40804, 48400, 68644, 88804, 228484, 242064, 248004, 446224, 462400, 608400, 640000, 806404, 824464, 846400, 868624, 2022084, 2226064, 2244004, 2624400, 2822400, 2862864, 4000000, 4008004, 4080400
Offset: 1
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)
Programs
-
Mathematica
t = {}; n = -1; While[Length[t] < 1000, n++; If[Intersection[IntegerDigits[n^2], {1, 3, 5, 7, 9}] == {}, AppendTo[t, n^2]]] (* T. D. Noe, Apr 03 2014 *) Select[Range[0,3000]^2,AllTrue[IntegerDigits[#],EvenQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Feb 19 2016 *)
-
Python
from math import isqrt def ok(sq): return all(d in "02468" for d in str(sq)) def aupto(limit): sqs = (i*i for i in range(0, isqrt(limit)+1, 2)) return list(filter(ok, sqs)) print(aupto(4080400)) # Michael S. Branicky, May 20 2021
Formula
a(n) = A030097(n)^2. - Michel Marcus, Apr 03 2014
Comments