A030125 Decimal expansion of Lehmer's constant.
5, 9, 2, 6, 3, 2, 7, 1, 8, 2, 0, 1, 6, 3, 6, 1, 9, 7, 1, 0, 4, 0, 7, 8, 6, 0, 4, 9, 9, 5, 7, 0, 1, 4, 6, 9, 0, 8, 4, 2, 7, 5, 4, 0, 7, 1, 9, 7, 1, 6, 1, 0, 7, 1, 0, 9, 9, 5, 6, 2, 6, 0, 8, 1, 5, 8, 2, 4, 7, 3, 5, 2, 3, 6, 4, 1, 6, 0, 0, 0, 8, 5, 1, 0, 6, 6, 4, 7, 8, 4, 2, 9, 7, 1, 0, 1, 2, 5, 7, 0, 5, 1, 1, 8
Offset: 0
Examples
0.592632718201636197104078604995701469084275407197161...
References
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 433-434.
Links
- Simon Plouffe and Sean A. Irvine, Table of n, a(n) for n = 0..2000 [Replaces terms 0..998 from Harry J. Smith.]
- Steven R. Finch, Lehmer's Constant. [Broken link]
- Steven R. Finch, Lehmer's Constant. [From the Wayback machine]
- D. H. Lehmer, A cotangent analogue of continued fractions, Duke Math. J., Vol. 4, No. 2 (1938), pp. 323-340. [Annotated scanned copy]
- Simon Plouffe, The Lehmer Constant to 1000 digits.
- Simon Plouffe, The Lehmer constant to 1000 digits.
- Eric Weisstein's World of Mathematics, Lehmer's Constant.
Crossrefs
Programs
-
Mathematica
RealDigits[With[{nn=15},Cot[Total[Last[#]ArcCot[First[#]]&/@Thread[ {NestList[ #^2+#+1&,0,nn],PadRight[{},nn+1,{1,-1}]}]]]],10,120][[1]] (* Harvey P. Dale, Jan 29 2012 *)
-
PARI
b=0.;1/tan(suminf(k=1,b=b^2+b+1;(-1)^k*atan(1/b))+Pi/2) \\ Charles R Greathouse IV, Jan 21 2016
Formula
Equals cot(Sum_{k>=0} (-1)^k * arccot(A002065(k))). - Amiram Eldar, Aug 18 2020
Extensions
More terms from David W. Wilson
Comments