A002065
a(n+1) = a(n)^2 + a(n) + 1.
Original entry on oeis.org
0, 1, 3, 13, 183, 33673, 1133904603, 1285739649838492213, 1653126447166808570252515315100129583, 2732827050322355127169206170438813672515557678636778921646668538491883473
Offset: 0
- Mordechai Ben-Ari, Mathematical Logic for Computer Science, Third edition, 173-203.
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 433-434.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- John Cerkan, Table of n, a(n) for n = 0..12
- A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437.
- A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437 (original plus references that F.Q. forgot to include - see last page!)
- Steven R. Finch, Lehmer's Constant [Broken link]
- Steven R. Finch, Lehmer's Constant [From the Wayback machine]
- Stan C. Kalman and Barry L. Kwasny, Tail-recursive distributed representations and simple recurrent networks, Connection Science, 7 (1995), 61-80.
- D. H. Lehmer, A cotangent analogue of continued fractions, Duke Math. J., 4 (1935), 323-340.
- D. H. Lehmer, A cotangent analogue of continued fractions, Duke Math. J., 4 (1935), 323-340. [Annotated scanned copy]
- H. P. Robinson, Letter to N. J. A. Sloane, Jul 12 1971
- Eric Weisstein's World of Mathematics, Lehmer's Constant
- Eric Weisstein's World of Mathematics, Lehmer Cotangent Expansion
- Wikipedia, Herbrand Structure
- J. W. Wrench, Jr., Letters to N. J. A. Sloane, Feb 1974
- Index entries for sequences of form a(n+1)=a(n)^2 + ...
-
[n le 1 select 0 else Self(n-1)^2 + Self(n-1) + 1: n in [1..15]]; // Vincenzo Librandi, Oct 05 2015
-
f[x_] := 1 + x + x^2 ; NestList[f, 1, 7] (* Geoffrey Critzer, May 04 2010 *)
-
a(n) := if n = 0 then 1 else a(n-1)^2+a(n-1)+1 $
makelist(a(n),n,0,8); /* Emanuele Munarini, Mar 23 2017 */
-
a(n)=if(n<1,0,a(n-1)^2+a(n-1)+1)
A002665
Continued fraction expansion of Lehmer's constant.
Original entry on oeis.org
0, 1, 1, 2, 5, 34, 985, 1151138, 1116929202845, 1480063770341062927127746, 1846425204836010506550936273411258268076151412465
Offset: 0
0.592632718201636... = 0 + 1/(1 + 1/(1 + 1/(2 + 1/(5 + ...)))). - _Harry J. Smith_, May 14 2009
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Harry J. Smith, Table of n, a(n) for n = 0..12
- D. H. Lehmer, A cotangent analogue of continued fractions, Duke Math. J., 4 (1935), 323-340.
- D. H. Lehmer, A cotangent analogue of continued fractions, Duke Math. J., 4 (1935), 323-340. [Annotated scanned copy]
- G. Xiao, Contfrac
- Index entries for continued fractions for constants
Starting with n=2, a(n)/a(n-2) are in
A096407.
-
digits = 1200; c[0] = 0; c[n_] := c[n] = c[n-1]^2 + c[n-1] + 1; LC[m_] := LC[m] = Cot[Sum[(-1)^k*ArcCot[c[k]], {k, 0, m}]] // N[#, digits+10]&; LC[10]; LC[m = 20]; While[Abs[LC[m] - LC[m-10]] > 10^-digits, m = m+10]; ContinuedFraction[LC[m]] (* Jean-François Alcover, Oct 08 2013 *)
-
default(realprecision, 2000);b=0.;
Lehmers=1/tan(suminf(k=1,b=b^2+b+1;(-1)^k*atan(1/b))+Pi/2);
x=contfrac(Lehmers);
for (n=1, 13, write("b002665.txt", n-1, " ", x[n])) \\ Harry J. Smith, May 14 2009; edited by Charles R Greathouse IV, Jan 21 2016
A002794
Numerators of convergents to Lehmer's constant.
Original entry on oeis.org
1, 1, 3, 16, 547, 538811, 620245817465, 692770666469127829226736, 1025344764595988314871439243086711931108916434521
Offset: 0
- D. H. Lehmer, A cotangent analogue of continued fractions, Duke Math. J., 4 (1935), 323-340.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- J. W. Wrench, Jr., personal communication.
-
Block[{$MaxExtraPrecision=1000},Numerator[Convergents[With[{nn=15},Cot[ Total[Last[#] ArcCot[First[#]]&/@Thread[{NestList[#^2+#+1&,0,nn], PadRight[{},nn+1,{1,-1}]}]]]],10]]] (* Harvey P. Dale, Jan 29 2012 *)
A002795
Denominators of convergents to Lehmer's constant.
Original entry on oeis.org
1, 2, 5, 27, 923, 909182, 1046593950039, 1168971346319460027570137, 1730152138254248421873938035305987364739567671241
Offset: 0
- D. H. Lehmer, A cotangent analogue of continued fractions, Duke Math. J., 4 (1935), 323-340.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- J. W. Wrench, Jr., personal communication.
Original entry on oeis.org
1, 2, 5, 21, 568, 539379, 620246356844, 692770666469748075583580, 1025344764595988314871439935857378400856992018101
Offset: 0
Showing 1-5 of 5 results.
Comments