cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A174143 Partials sums of A002794.

Original entry on oeis.org

1, 2, 5, 21, 568, 539379, 620246356844, 692770666469748075583580, 1025344764595988314871439935857378400856992018101
Offset: 0

Views

Author

Jonathan Vos Post, Mar 09 2010

Keywords

Comments

Partial sums of numerators of convergents to Lehmer's constant.

Crossrefs

Formula

a(n) = Sum_{i=0..n} A002794(i).

A002065 a(n+1) = a(n)^2 + a(n) + 1.

Original entry on oeis.org

0, 1, 3, 13, 183, 33673, 1133904603, 1285739649838492213, 1653126447166808570252515315100129583, 2732827050322355127169206170438813672515557678636778921646668538491883473
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of trees of height <= n, generated by unary and binary composition: S = x + (S) + (S,S) = x + (x) + (x,x) + (x,(x)) + ((x),x) + ((x)) + ((x),(x)) + (x,(x,x)) + ((x,x),x) + ((x),(x,x)) + ((x,x),(x)) + ((x,x)) + ((x,x),(x,x)) + ... (x is of height 1); the first difference sequence (beginning with 1), 1 2 10 170 33490 1133870930..., gives the number h(n) of these trees whose height is n, h(n + 1) = h(n) + h(n)*h(n) + 2h(n)*a(n-1), h(1) = 1; as h(n + 1)/h(n) = 1 + a(n) + a(n-1) gives sequence 1, 2, 10 (2*5), 170 (2*5*17), 33490 (2*5*17*197), 1133870930 (2*5*17*197*33877), ... - Claude Lenormand (claude.lenormand(AT)free.fr), Sep 05 2001
This is a divisibility sequence, that is, if n divides m, then a(n) divides a(m). This is a particular case of the result: if p(x) is an integral polynomial then the sequence of n-th iterates p^n(x) (:= p(p^(n-1)(x)) with p^1(x) := p(x)), n = 1,2,..., of p(x) evaluated at x = 0 is a divisibility sequence. In this case p(x) = 1 + x + x^2. - Peter Bala, Mar 28 2018

References

  • Mordechai Ben-Ari, Mathematical Logic for Computer Science, Third edition, 173-203.
  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 433-434.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [n le 1 select 0 else Self(n-1)^2 + Self(n-1) + 1: n in [1..15]]; // Vincenzo Librandi, Oct 05 2015
    
  • Mathematica
    f[x_] := 1 + x + x^2 ; NestList[f, 1, 7] (* Geoffrey Critzer, May 04 2010 *)
  • Maxima
    a(n) := if n = 0 then 1 else a(n-1)^2+a(n-1)+1 $
    makelist(a(n),n,0,8); /* Emanuele Munarini, Mar 23 2017 */
  • PARI
    a(n)=if(n<1,0,a(n-1)^2+a(n-1)+1)
    

Formula

a(n) = floor(c^(2^n)) for n > 0, where c = 1.385089248334672909882206535871311526236739234374149506334120193387331772... - Benoit Cloitre, Nov 29 2002
a(n) = (A232806(n) - 1)/2 = (A232806(n-1)^2 + 3)/4. - Peter Bala, Mar 28 2018

A002665 Continued fraction expansion of Lehmer's constant.

Original entry on oeis.org

0, 1, 1, 2, 5, 34, 985, 1151138, 1116929202845, 1480063770341062927127746, 1846425204836010506550936273411258268076151412465
Offset: 0

Views

Author

Keywords

Examples

			0.592632718201636... = 0 + 1/(1 + 1/(1 + 1/(2 + 1/(5 + ...)))). - _Harry J. Smith_, May 14 2009
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A030125 (decimal expansion).
Starting with n=2, a(n)/a(n-2) are in A096407.

Programs

  • Mathematica
    digits = 1200; c[0] = 0; c[n_] := c[n] = c[n-1]^2 + c[n-1] + 1; LC[m_] := LC[m] = Cot[Sum[(-1)^k*ArcCot[c[k]], {k, 0, m}]] // N[#, digits+10]&; LC[10]; LC[m = 20]; While[Abs[LC[m] - LC[m-10]] > 10^-digits, m = m+10]; ContinuedFraction[LC[m]] (* Jean-François Alcover, Oct 08 2013 *)
  • PARI
    default(realprecision, 2000);b=0.;
    Lehmers=1/tan(suminf(k=1,b=b^2+b+1;(-1)^k*atan(1/b))+Pi/2);
    x=contfrac(Lehmers);
    for (n=1, 13, write("b002665.txt", n-1, " ", x[n])) \\ Harry J. Smith, May 14 2009; edited by Charles R Greathouse IV, Jan 21 2016

Formula

With a different offset: a(0)=1, a(1)=1, a(n+1)=(b(n)+b(n-1)+1)*a(n-1), n >= 1, b()=A002065, with b(0)=0, b(1)=1, b(2)=3, ...

Extensions

More terms from Jeffrey Shallit
First two terms inserted by Harry J. Smith, May 14 2009

A030125 Decimal expansion of Lehmer's constant.

Original entry on oeis.org

5, 9, 2, 6, 3, 2, 7, 1, 8, 2, 0, 1, 6, 3, 6, 1, 9, 7, 1, 0, 4, 0, 7, 8, 6, 0, 4, 9, 9, 5, 7, 0, 1, 4, 6, 9, 0, 8, 4, 2, 7, 5, 4, 0, 7, 1, 9, 7, 1, 6, 1, 0, 7, 1, 0, 9, 9, 5, 6, 2, 6, 0, 8, 1, 5, 8, 2, 4, 7, 3, 5, 2, 3, 6, 4, 1, 6, 0, 0, 0, 8, 5, 1, 0, 6, 6, 4, 7, 8, 4, 2, 9, 7, 1, 0, 1, 2, 5, 7, 0, 5, 1, 1, 8
Offset: 0

Views

Author

Keywords

Comments

Digits 999 and 1000 should be "48" not "65" as given in the Plouffe links. - Sean A. Irvine, Aug 24 2014
Named after the American mathematician Derrick Henry Lehmer (1905-1991). - Amiram Eldar, Jun 22 2021

Examples

			0.592632718201636197104078604995701469084275407197161...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 433-434.

Crossrefs

Cf. A002665 (continued fraction). - Harry J. Smith, May 14 2009

Programs

  • Mathematica
    RealDigits[With[{nn=15},Cot[Total[Last[#]ArcCot[First[#]]&/@Thread[ {NestList[ #^2+#+1&,0,nn],PadRight[{},nn+1,{1,-1}]}]]]],10,120][[1]] (* Harvey P. Dale, Jan 29 2012 *)
  • PARI
    b=0.;1/tan(suminf(k=1,b=b^2+b+1;(-1)^k*atan(1/b))+Pi/2) \\ Charles R Greathouse IV, Jan 21 2016

Formula

Equals cot(Sum_{k>=0} (-1)^k * arccot(A002065(k))). - Amiram Eldar, Aug 18 2020

Extensions

More terms from David W. Wilson

A002795 Denominators of convergents to Lehmer's constant.

Original entry on oeis.org

1, 2, 5, 27, 923, 909182, 1046593950039, 1168971346319460027570137, 1730152138254248421873938035305987364739567671241
Offset: 0

Views

Author

Keywords

References

  • D. H. Lehmer, A cotangent analogue of continued fractions, Duke Math. J., 4 (1935), 323-340.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • J. W. Wrench, Jr., personal communication.

Crossrefs

Showing 1-5 of 5 results.