A030132 Digital root of Fibonacci(n).
0, 1, 1, 2, 3, 5, 8, 4, 3, 7, 1, 8, 9, 8, 8, 7, 6, 4, 1, 5, 6, 2, 8, 1, 9, 1, 1, 2, 3, 5, 8, 4, 3, 7, 1, 8, 9, 8, 8, 7, 6, 4, 1, 5, 6, 2, 8, 1, 9, 1, 1, 2, 3, 5, 8, 4, 3, 7, 1, 8, 9, 8, 8, 7, 6, 4, 1, 5, 6, 2, 8, 1, 9, 1, 1, 2, 3, 5, 8, 4, 3, 7, 1, 8, 9, 8, 8
Offset: 0
Examples
a(10) = 1 because F(10) = 55, and since 5 + 5 = 10 and 1 + 0 = 1 is the digital root of 55.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- Robert Bruce Gray, Another context for the first 48 terms of this sequence, May 08 2025
- S. Marivani and others, Digital Roots of Fibonacci Numbers: Problem 10974, Amer. Math. Monthly, 111 (No. 7, 2004), 628.
- Colm Mulcahy, Gibonacci Bracelets.
- Marc Renault, The Fibonacci sequence modulo m
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1).
Crossrefs
Programs
-
Haskell
a030132 n = a030132_list !! n a030132_list = 0 : 1 : map a007953 (zipWith (+) a030132_list (tail a030132_list)) -- Reinhard Zumkeller, Aug 20 2011
-
Mathematica
digitalRoot[n_Integer?Positive] := FixedPoint[Plus@@IntegerDigits[#]&, n]; Table[If[n == 0, 0, digitalRoot[Fibonacci[n]]], {n, 0, 100}] (* Vladimir Joseph Stephan Orlovsky, May 02 2011 *) Table[NestWhile[Total[IntegerDigits[#]]&, Fibonacci[n], # > 9 &], {n, 0, 90}] (* Harvey P. Dale, May 07 2012 *) PadRight[{0},120,{9,1,1,2,3,5,8,4,3,7,1,8,9,8,8,7,6,4,1,5,6,2,8,1}] (* Harvey P. Dale, Jul 20 2024 *)
-
PARI
a(n)=if(n,(fibonacci(n)-1)%9+1,0) \\ Charles R Greathouse IV, Jan 23 2013
Formula
a(n + 1) = sum of digits of (a(n) + a(n - 1)).
Periodic with period 24 = A001175(9) given by {1, 1, 2, 3, 5, 8, 4, 3, 7, 1, 8, 9, 8, 8, 7, 6, 4, 1, 5, 6, 2, 8, 1, 9}.
G.f.: x*( -1 -x -2*x^2 -3*x^3 -5*x^4 -8*x^5 -4*x^6 -3*x^7 -7*x^8 -x^9 -8*x^10 -9*x^11 -8*x^12 -8*x^13 -7*x^14 -6*x^15 -4*x^16 -x^17 -5*x^18 -6*x^19 -2*x^20 -8*x^21 -x^22 -9*x^23 ) / ( (x-1) *(1+x+x^2) *(1+x) *(1-x+x^2) *(1+x^2) *(x^4-x^2+1) *(1+x^4) *(x^8-x^4+1) ). - R. J. Mathar, Feb 08 2013
Extensions
Entry revised by N. J. A. Sloane, Aug 29 2004
Comments