cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A004090 Sum of digits of Fibonacci numbers.

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 8, 4, 3, 7, 10, 17, 9, 8, 17, 7, 24, 22, 19, 14, 24, 20, 17, 28, 27, 19, 19, 29, 21, 23, 17, 31, 30, 34, 37, 35, 27, 35, 44, 43, 24, 31, 46, 41, 33, 29, 35, 37, 54, 55, 46, 29, 48, 41, 53, 58, 48, 52, 73, 44, 54, 53, 62, 61, 51, 67, 73, 59
Offset: 0

Views

Author

Keywords

Comments

a(n) and Fibonacci(n) are congruent modulo 9 which implies that (a(n) mod 9) is equal to (Fibonacci(n) mod 9) A007887(n). Thus (a(n) mod 9) is periodic with Pisano period A001175(9) = 24. - Hieronymus Fischer, Jun 25 2007
It appears that a(n) - n stays negative for n > 5832, which explains why A020995 is finite. - T. D. Noe, Mar 19 2012

Crossrefs

Cf. A000045 (Fibonacci), A007953 (digit sum), A030132 (digital root of A45), A010888 (digital root), A246558, A261587, A068500.

Programs

Formula

a(n) = Fibonacci(n) - 9*Sum_{k>0} floor(Fibonacci(n)/10^k). - Hieronymus Fischer, Jun 25 2007
a(n) = A007953(A000045(n)). - Reinhard Zumkeller, Nov 17 2014
A010888(a(n)) = A030132(n) == a(n) (mod 9). - M. F. Hasler, Jul 07 2025

A153130 Period 6: repeat [1, 2, 4, 8, 7, 5].

Original entry on oeis.org

1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5
Offset: 0

Views

Author

Paul Curtz, Dec 19 2008

Keywords

Comments

Digital root of 2^n.
A regular version of Pitoun's sequence: a(n) = A029898(n+1).
Also obtained from permutations of A141425, A020806, A070366, A153110, A153990, A154127, A154687, or A154815.
This sequence and its (again period 6) repeated differences produce the table:
1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, ...
1, 2, 4, -1, -2, -4, 1, 2, 4, -1, -2, ...
1, 2, -5, -1, -2, 5, 1, 2, -5, -1, -2, ...
1, -7, 4, -1, 7, -4, 1, -7, 4, -1, 7, ...
-8, 11, -5, 8,-11, 5, -8, 11, -5, 8,-11, ...
19,-16, 13,-19, 16,-13, 19,-16, 13,-19, 16, ...
-35, 29,-32, 35,-29, 32,-35, 29,-32, 35,-29, ...
64,-61, 67,-64, 61,-67, 64,-61, 67,-64, 61, ...
If each entry of this table is read modulo 9 we obtain the very regular table:
1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, ...
1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, ...
1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, ...
1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, ...
1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, ...
1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, ...
Also the decimal expansion of the constant 125/1001. - R. J. Mathar, Jan 23 2009
Digital root of the powers of any number congruent to 2 mod 9. - Alonso del Arte, Jan 26 2014

References

  • Cecil Balmond, Number 9: The Search for the Sigma Code. Munich, New York: Prestel (1998): 203.

Crossrefs

Cf. digital roots of powers of c mod 9: c = 4, A100402; c = 5, A070366; c = 7, A070403; c = 8, A010689.

Programs

Formula

a(n) + a(n+3) = 9 = A010734(n).
G.f.: (1+x+2x^2+5x^3)/((1-x)(1+x)(1-x+x^2)). - R. J. Mathar, Jan 23 2009
a(n) = A082365(n) mod 9. - Paul Curtz, Mar 31 2009
a(n) = -1/2*cos(Pi*n) - 3*cos(1/3*Pi*n) - 3^(1/2)*sin(1/3*Pi*n) + 9/2. - Leonid Bedratyuk, May 13 2012
a(n) = A010888(A004000(n+1)). - Ivan N. Ianakiev, Nov 27 2014
From Wesley Ivan Hurt, Apr 20 2015: (Start)
a(n) = a(n-6) for n>5.
a(n) = a(n-1) - a(n-3) + a(n-4) for n>3.
a(n) = (2+3*(n-1 mod 3))*(n mod 2) + (1+3*(-n mod 3))*(n-1 mod 2). (End)
a(n) = 2^n mod 9. - Nikita Sadkov, Oct 06 2018
From Stefano Spezia, Mar 20 2025: (Start)
E.g.f.: 4*cosh(x) - exp(x/2)*(3*cos(sqrt(3)*x/2) + sqrt(3)*sin(sqrt(3)*x/2)) + 5*sinh(x).
a(n) = A007953(2*a(n-1)) = A010888(2*a(n-1)). (End)

Extensions

Edited by R. J. Mathar, Apr 09 2009

A010077 a(n) = sum of digits of a(n-1) + sum of digits of a(n-2); a(0) = 0, a(1) = 1.

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 8, 13, 12, 7, 10, 8, 9, 17, 17, 16, 15, 13, 10, 5, 6, 11, 8, 10, 9, 10, 10, 2, 3, 5, 8, 13, 12, 7, 10, 8, 9, 17, 17, 16, 15, 13, 10, 5, 6, 11, 8, 10, 9, 10, 10, 2, 3, 5, 8, 13, 12, 7, 10, 8, 9, 17, 17, 16, 15, 13, 10, 5, 6, 11, 8, 10, 9, 10, 10
Offset: 0

Views

Author

Keywords

Comments

The digital sum analog (in base 10) of the Fibonacci recurrence. - Hieronymus Fischer, Jun 27 2007
a(n) and Fibonacci(n) = A000045(n) are congruent modulo 9 which implies that (a(n) mod 9) is equal to (Fibonacci(n) mod 9) = A007887(n). Thus (a(n) mod 9) is periodic with the Pisano period A001175(9)=24. - Hieronymus Fischer, Jun 27 2007
a(n) == A004090(n) (mod 9) (A004090(n) = digital sum of Fibonacci(n)). - Hieronymus Fischer, Jun 27 2007
For general bases p > 2, we have the inequality 2 <= a(n) <= 2p-3 (for n > 2). Actually, a(n) <= 17 = A131319(10) for the base p=10. - Hieronymus Fischer, Jun 27 2007

Crossrefs

Programs

  • Mathematica
    a[0] = 0; a[1] = 1; a[n_] := a[n] = Apply[ Plus, IntegerDigits[ a[n - 1] ]] + Apply[ Plus, IntegerDigits[ a[n - 2] ]]; Table[ a[n], {n, 0, 100} ]
    nxt[{a_,b_}]:={b, Total[IntegerDigits[a]]+Total[IntegerDigits[b]]}; NestList[ nxt,{0,1},80][[All,1]] (* Harvey P. Dale, Apr 15 2018 *)
  • PARI
    first(n) = {n = max(n, 2); my(res = vector(n)); res[2] = 1; for(i = 3, n, res[i] = sumdigits(res[i-1]) + sumdigits(res[i-2]) ); res } \\ David A. Corneth, May 26 2021

Formula

Periodic from n=3 with period 24. - Franklin T. Adams-Watters, Mar 13 2006
a(n) = A030132(n-4) + A030132(n-3) for n>3. - Reinhard Zumkeller, Jul 04 2007
a(n) = a(n-1) + a(n-2) - 9*(floor(a(n-1)/10) + floor(a(n-2)/10)). - Hieronymus Fischer, Jun 27 2007
a(n) = floor(a(n-1)/10) + floor(a(n-2)/10) + (a(n-1) mod 10) + (a(n-2) mod 10). - Hieronymus Fischer, Jun 27 2007
a(n) = A059995(a(n-1)) + A059995(a(n-2)) + A010879(a(n-1)) + A010879(a(n-2)). - Hieronymus Fischer, Jun 27 2007
a(n) = Fibonacci(n) - 9*Sum_{k=2..n-1} Fibonacci(n-k+1)*floor(a(k)/10) where Fibonacci(n) = A000045(n). - Hieronymus Fischer, Jun 27 2007

A017641 a(n) = 12*n + 10.

Original entry on oeis.org

10, 22, 34, 46, 58, 70, 82, 94, 106, 118, 130, 142, 154, 166, 178, 190, 202, 214, 226, 238, 250, 262, 274, 286, 298, 310, 322, 334, 346, 358, 370, 382, 394, 406, 418, 430, 442, 454, 466, 478, 490, 502, 514, 526, 538, 550, 562, 574, 586, 598, 610, 622, 634
Offset: 0

Views

Author

Keywords

Comments

Exponents e such that x^e + x^2 - 1 is reducible.
If Y is a 4-subset of an (2n+1)-set X then, for n>=3, a(n-2) is the number of 3-subsets of X having at least two elements in common with Y. - Milan Janjic, Dec 16 2007

Crossrefs

Programs

Formula

A030132(a(n)) = 9. - Reinhard Zumkeller, Jul 04 2007
G.f.: 2*(5 + x)/(1 - x)^2. - Stefano Spezia, May 09 2021
Sum_{n>=0} (-1)^n/a(n) = Pi/12 - sqrt(3)*log(2 + sqrt(3))/12. - Amiram Eldar, Dec 12 2021
From Elmo R. Oliveira, Apr 04 2025: (Start)
E.g.f.: 2*exp(x)*(5 + 6*x).
a(n) = 2*A016969(n).
a(n) = 2*a(n-1) - a(n-2) for n >= 2. (End)

A030133 a(n+1) is the sum of digits of (a(n) + a(n-1)).

Original entry on oeis.org

2, 1, 3, 4, 7, 2, 9, 2, 2, 4, 6, 1, 7, 8, 6, 5, 2, 7, 9, 7, 7, 5, 3, 8, 2, 1, 3, 4, 7, 2, 9, 2, 2, 4, 6, 1, 7, 8, 6, 5, 2, 7, 9, 7, 7, 5, 3, 8, 2, 1, 3, 4, 7, 2, 9, 2, 2, 4, 6, 1, 7, 8, 6, 5, 2, 7, 9, 7, 7, 5, 3, 8, 2, 1, 3, 4, 7, 2, 9, 2, 2, 4, 6, 1, 7, 8, 6, 5, 2, 7, 9, 7, 7, 5, 3, 8, 2, 1, 3
Offset: 0

Views

Author

Keywords

Comments

a(n) = A010888(A000032(n)). - Reinhard Zumkeller, Aug 20 2011
Similar to the digital roots of several Fibonacci sequences, this digital root sequence for Lucas numbers (A000032) has period 24 with digits summing to 117.
Decimal expansion of 23719213606865169775282 / 111111111111111111111111 = 0.[213472922461786527977538] (periodic). - Daniel Forgues, Feb 27 2017

Crossrefs

Programs

  • Haskell
    a030133 n = a030133_list !! n
    a030133_list =
       2 : 1 : map a007953 (zipWith (+) a030133_list $ tail a030133_list)
    -- Reinhard Zumkeller, Aug 20 2011
    
  • Mathematica
    Transpose[NestList[{Last[#],Total[IntegerDigits[Total[#]]]}&, {2,1}, 100]] [[1]] (* Harvey P. Dale, Jul 25 2011 *)
  • PARI
    V=[2,1];for(n=1,100,V=concat(V,sumdigits(V[n]+V[n+1])));V \\ Derek Orr, Feb 27 2017
    
  • PARI
    Vec((2 + x + 3*x^2 + 4*x^3 + 7*x^4 + 2*x^5 + 9*x^6 + 2*x^7 + 2*x^8 + 4*x^9 + 6*x^10 + x^11 + 7*x^12 + 8*x^13 + 6*x^14 + 5*x^15 + 2*x^16 + 7*x^17 + 9*x^18 + 7*x^19 + 7*x^20 + 5*x^21 + 3*x^22 + 8*x^23) / (1 - x^24)  + O(x^80)) \\ Colin Barker, Sep 25 2019

Formula

a(n+24) = a(n); a(A017593(n)) = 9. - Reinhard Zumkeller, Jul 04 2007
G.f.: (2 + x + 3*x^2 + 4*x^3 + 7*x^4 + 2*x^5 + 9*x^6 + 2*x^7 + 2*x^8 + 4*x^9 + 6*x^10 + x^11 + 7*x^12 + 8*x^13 + 6*x^14 + 5*x^15 + 2*x^16 + 7*x^17 + 9*x^18 + 7*x^19 + 7*x^20 + 5*x^21 + 3*x^22 + 8*x^23) / (1 - x^24). - Colin Barker, Sep 25 2019

A065076 a(0) = 0, a(1) = 1, a(n) = (sum of digits of a(n-1)) + a(n-2).

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 8, 13, 12, 16, 19, 26, 27, 35, 35, 43, 42, 49, 55, 59, 69, 74, 80, 82, 90, 91, 100, 92, 111, 95, 125, 103, 129, 115, 136, 125, 144, 134, 152, 142, 159, 157, 172, 167, 186, 182, 197, 199, 216, 208, 226, 218, 237, 230, 242, 238, 255, 250, 262, 260, 270
Offset: 0

Views

Author

Bodo Zinser, Nov 09 2001

Keywords

Examples

			a(8) = 12 because a(7) = 13, a(6) = 8 and 4 = 1+3 and 12 = 4 + 8.
		

Crossrefs

Cf. A007953 and A007612.
Cf. A030132.

Programs

  • Haskell
    a065076 n = a065076_list !! n
    a065076_list = 0 : 1 : zipWith (+)
                    a065076_list (map a007953 $ tail a065076_list)
    -- Reinhard Zumkeller, Nov 13 2014
  • Mathematica
    a[0] = 0; a[1] = 1; a[n_] := a[n] = Apply[ Plus, IntegerDigits[ a[n - 1] ]] + a[n - 2]; Table[ a[n], {n, 0, 100} ]
    Transpose[NestList[{Last[#],Total[IntegerDigits[Last[#]]]+First[#]}&, {0,1}, 60]][[1]] (* Harvey P. Dale, Dec 07 2011 *)
  • PARI
    { my(a,a1,a2); for (n=0, 60, if (n>1, a=sumdigits(a1) + a2; a2=a1; a1=a, if (n, a=a1=1, a=a2=0)); print1(a, ", ") ) } \\ Harry J. Smith, Oct 06 2009
    

Extensions

More terms from Larry Reeves (larryr(AT)acm.org) and Robert G. Wilson v, Nov 13 2001

A216676 Digital roots of squares of Fibonacci numbers.

Original entry on oeis.org

1, 1, 4, 9, 7, 1, 7, 9, 4, 1, 1, 9, 1, 1, 4, 9, 7, 1, 7, 9, 4, 1, 1, 9, 1, 1, 4, 9, 7, 1, 7, 9, 4, 1, 1, 9, 1, 1, 4, 9, 7, 1, 7, 9, 4, 1, 1, 9, 1, 1, 4, 9, 7, 1, 7, 9, 4, 1, 1, 9, 1, 1, 4, 9, 7, 1, 7, 9, 4, 1, 1, 9, 1, 1, 4, 9, 7, 1, 7, 9, 4, 1, 1, 9, 1, 1, 4
Offset: 1

Views

Author

Ravi Bhandari, Sep 14 2012

Keywords

Comments

The first 11 terms are symmetric about 6th term. The first 23 terms are symmetric about 12th term. We can generalize this as follows: the first (2n-1) terms are symmetric about n-th term.
The sequence appears to be periodic with period-length 12. - John W. Layman, Sep 14 2012
The Fibonacci numbers are periodic modulo any integer. The digital roots of the Fibonacci numbers are given by A030132, a sequence with a period length of 24. Squaring gives {1, 1, 4, 9, 7, 1, 7, 9, 4, 1, 1, 9, 1, 1, 4, 9, 7, 1, 7, 9, 4, 1, 1, 9}, which is a sequence of twelve numbers given twice. Therefore, the previous comment is correct. - Alonso del Arte, Sep 25 2012

Examples

			a(7) = 7 because F(7) = 13 and 13^2 = 169, with digits adding up to 16, the digital root is therefore 7.
		

Programs

  • Mathematica
    a = {}; For[n = 1, n <= 100, n++, {fn2 = Fibonacci[n]^2; d = IntegerDigits[fn2]; While[Length[d] > 1, d = IntegerDigits[Total[d]]]; AppendTo[a, d[[1]]] }]; a (* John W. Layman,  Sep 14 2012 *)
    ReplaceAll[Table[Mod[Fibonacci[n]^2, 9], {n, 72}], {0 -> 9}] (* Alonso del Arte, Sep 23 2012 *)
  • PARI
    fibmod(n, m)=((Mod([1, 1; 1, 0], m))^n)[1, 2]
    a(n)=lift(fibmod(n,9)^2-1)+1 \\ Charles R Greathouse IV, Jun 20 2017

Formula

a(n) = A010888(A007598(n)).
G.f. ( -1-x-3*x^2-8*x^3-3*x^4+8*x^5-9*x^7-x^6 ) / ( (x-1) *(1+x) *(x^2+1) *(x^4-x^2+1) ). - R. J. Mathar, Sep 15 2012

Extensions

Terms a(25)-a(72) by John W. Layman, Sep 14 2012
Terms a(73) and beyond from Andrew Howroyd, Feb 25 2018

A049341 a(n+1) = sum of digits of a(n) + a(n-1).

Original entry on oeis.org

3, 6, 9, 6, 6, 3, 9, 3, 3, 6, 9, 6, 6, 3, 9, 3, 3, 6, 9, 6, 6, 3, 9, 3, 3, 6, 9, 6, 6, 3, 9, 3, 3, 6, 9, 6, 6, 3, 9, 3, 3, 6, 9, 6, 6, 3, 9, 3, 3, 6, 9, 6, 6, 3, 9, 3, 3, 6, 9, 6, 6, 3, 9, 3, 3, 6, 9, 6, 6, 3, 9, 3, 3, 6, 9, 6, 6, 3, 9, 3, 3, 6, 9, 6, 6, 3, 9, 3, 3, 6, 9, 6, 6, 3, 9, 3, 3, 6, 9, 6, 6, 3, 9, 3, 3, 6, 9, 6, 6, 3, 9, 3
Offset: 0

Views

Author

Keywords

Comments

a(n+1) = A007953(a(n) + a(n-1)) for n > 0.

Examples

			After 6,9 we get 6+9 = 15 -> 1+5 = 6.
		

Crossrefs

Programs

  • Haskell
    a049341 n =  a030132_list !! n
    a049341_list =
       3 : 6 : map a007953 (zipWith (+) a049341_list $ tail a049341_list)
    -- Reinhard Zumkeller, Aug 20 2011
  • Mathematica
    LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 1},{3, 6, 9, 6, 6, 3, 9, 3},112] (* Ray Chandler, Aug 27 2015 *)

Formula

Period 8.

Extensions

Definition improved by Reinhard Zumkeller, Aug 20 2011

A112661 Sum of digits of sum of previous 3 terms.

Original entry on oeis.org

1, 1, 1, 3, 5, 9, 8, 4, 3, 6, 4, 4, 5, 4, 4, 4, 3, 2, 9, 5, 7, 3, 6, 7, 7, 2, 7, 7, 7, 3, 8, 9, 2, 10, 3, 6, 10, 10, 8, 10, 10, 10, 3, 5, 9, 8, 4, 3, 6, 4, 4, 5, 4, 4, 4, 3, 2, 9, 5, 7, 3, 6, 7, 7, 2, 7, 7, 7, 3, 8, 9, 2, 10, 3, 6, 10, 10, 8, 10, 10, 10, 3, 5, 9, 8, 4, 3, 6, 4, 4, 5, 4, 4, 4
Offset: 0

Views

Author

Jonathan Vos Post and Andrew Carmichael Post (andrewpost(AT)gmail.com), Dec 29 2005

Keywords

Comments

Sum of digits, not iterated (i.e., not digital sum, reducing to a single digit) as we twice get a term of 10 which we do not reduce to 1. This is to tribonacci (A000073) as A030132 is to Fibonacci (A000045). This sequence has a preamble of 3 terms (1, 1, 1), then enters a cycle of length 39 (ending with 10, 10, 10).

Crossrefs

Programs

  • Mathematica
    a[0] = a[1] = a[2] = 1; a[n_] := a[n] = Total@ IntegerDigits[a[n-1] + a[n-2] + a[n-3]]; a /@ Range[0, 93] (* Giovanni Resta, Jun 17 2016 *)

Formula

a(n+2) = sum of digits of (a(n) + a(n-1) + a(n-2)). a(n+2) = A007953(a(n) + a(n-1) + a(n-2)).

Extensions

Data and name corrected by Giovanni Resta, Jun 17 2016

A189510 Digital root of n^n.

Original entry on oeis.org

1, 1, 4, 9, 4, 2, 9, 7, 1, 9, 1, 5, 9, 4, 7, 9, 7, 8, 9, 1, 4, 9, 4, 2, 9, 7, 1, 9, 1, 5, 9, 4, 7, 9, 7, 8, 9, 1, 4, 9, 4, 2, 9, 7, 1, 9, 1, 5, 9, 4, 7, 9, 7, 8, 9, 1, 4, 9, 4, 2, 9, 7, 1, 9, 1, 5, 9, 4, 7, 9, 7, 8, 9, 1, 4, 9, 4, 2, 9, 7, 1, 9, 1, 5, 9, 4, 7
Offset: 0

Views

Author

Keywords

Comments

a(n) = A010888(A000312(n)).
For n >= 1, this sequence is periodic with period 18. The sequence repeats [1,4,9,4,2,9,7,1,9,1,5,9,4,7,9,7,8,9]. - Nathaniel Johnston, May 04 2011

Crossrefs

Programs

  • Maple
    A189510 := proc(n) return ((n^n-1) mod 9) + 1: end: seq(A189510(n), n=0..80); # Nathaniel Johnston, May 04 2011
  • Mathematica
    digitalRoot[n_Integer?Positive] := FixedPoint[Plus@@IntegerDigits[#]&,n]; Table[If[n==0,0,digitalRoot[n^n]], {n,0,200}]
    Join[{1},LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1},{1, 4, 9, 4, 2, 9, 7, 1, 9, 1, 5, 9, 4, 7, 9, 7, 8, 9},86]] (* Ray Chandler, Aug 27 2015 *)
    PadRight[{1},100,{9,1,4,9,4,2,9,7,1,9,1,5,9,4,7,9,7,8}] (* Harvey P. Dale, Jul 31 2025 *)
  • Python
    def A189510(n): return (9,1,4,9,4,2,9,7,1,9,1,5,9,4,7,9,7,8)[n%18] if n else 1 # Chai Wah Wu, Feb 09 2023

Formula

From Chai Wah Wu, Feb 09 2023: (Start)
a(n) = a(n-18) for n > 18.
G.f.: (-8*x^18 - 8*x^17 - 7*x^16 - 9*x^15 - 7*x^14 - 4*x^13 - 9*x^12 - 5*x^11 - x^10 - 9*x^9 - x^8 - 7*x^7 - 9*x^6 - 2*x^5 - 4*x^4 - 9*x^3 - 4*x^2 - x - 1)/(x^18 - 1). (End)

Extensions

a(0) corrected by Reinhard Zumkeller, May 03 2011
Showing 1-10 of 19 results. Next