cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A030179 Quarter-squares squared: A002620^2.

Original entry on oeis.org

0, 0, 1, 4, 16, 36, 81, 144, 256, 400, 625, 900, 1296, 1764, 2401, 3136, 4096, 5184, 6561, 8100, 10000, 12100, 14641, 17424, 20736, 24336, 28561, 33124, 38416, 44100, 50625, 57600, 65536, 73984, 83521, 93636, 104976, 116964
Offset: 0

Views

Author

N. J. A. Sloane, Jan 10 2002

Keywords

Comments

Conjectured to be crossing number of complete bipartite graph K_{n,n}. Known to be true for n <= 7.
If the Zarankiewicz conjecture is true, then a(n) is also the rectilinear crossing number of K_{n,n}. - Eric W. Weisstein, Apr 24 2017
a(n+1) is the number of 4-tuples (w,x,y,z) with all terms in {0,...,n}, and w,x,y+1,z+1 all even. - Clark Kimberling, May 29 2012

References

  • C. Thomassen, Embeddings and minors, pp. 301-349 of R. L. Graham et al., eds., Handbook of Combinatorics, MIT Press.

Crossrefs

Programs

Formula

a(n) = floor(n^2/4)^2.
From R. J. Mathar, Jul 08 2010: (Start)
G.f.: x^2*(1+2*x+6*x^2+2*x^3+x^4) / ( (1+x)^3*(1-x)^5 ).
a(n) = 2*a(n-1) +2*a(n-2) -6*a(n-3) +6*a(n-5) -2*a(n-6) -2*a(n-7) +a(n-8). (End)
a(n) = (2*n^4 -2*n^2 +1 +(-1)^n*(2*n^2 -1))/32. - Luce ETIENNE, Aug 11 2014
Sum_{n>=2} 1/a(n) = Pi^4/90 + Pi^2/3 - 3. - Amiram Eldar, Sep 17 2023