A030179 Quarter-squares squared: A002620^2.
0, 0, 1, 4, 16, 36, 81, 144, 256, 400, 625, 900, 1296, 1764, 2401, 3136, 4096, 5184, 6561, 8100, 10000, 12100, 14641, 17424, 20736, 24336, 28561, 33124, 38416, 44100, 50625, 57600, 65536, 73984, 83521, 93636, 104976, 116964
Offset: 0
References
- C. Thomassen, Embeddings and minors, pp. 301-349 of R. L. Graham et al., eds., Handbook of Combinatorics, MIT Press.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- G. Xiao, Contfrac.
- Eric Weisstein's World of Mathematics, Complete Bipartite Graph.
- Eric Weisstein's World of Mathematics, Graph Crossing Number.
- Eric Weisstein's World of Mathematics, Rectilinear Crossing Number.
- Eric Weisstein's World of Mathematics, Zarankiewicz's Conjecture.
- Index entries for linear recurrences with constant coefficients, signature (2,2,-6,0,6,-2,-2,1).
Programs
-
GAP
List([0..40], n-> (2*n^4 -2*n^2 +1 +(-1)^n*(2*n^2 -1))/32); # G. C. Greubel, Dec 28 2019
-
Magma
[(Floor(n^2/4))^2: n in [0..40]]; // G. C. Greubel, Dec 28 2019
-
Maple
seq( (2*n^4 -2*n^2 +1 +(-1)^n*(2*n^2 -1))/32, n=0..40); # G. C. Greubel, Dec 28 2019
-
Mathematica
f[n_]:=Floor[n^2/2]; Table[Nest[f,n,2],{n,5!}]/2 (* Vladimir Joseph Stephan Orlovsky, Mar 10 2010 *) LinearRecurrence[{2,2,-6,0,6,-2,-2,1}, {0,0,1,4,16,36,81,144}, 40] (* Harvey P. Dale, Apr 26 2011 *) Floor[Range[0, 30]^2/4]^2 (* Eric W. Weisstein, Apr 24 2017 *)
-
PARI
a(n) = (n^2\4)^2 \\ Charles R Greathouse IV, Jun 11 2015
-
Sage
[floor(n^2/4)^2 for n in (0..40)] # G. C. Greubel, Dec 28 2019
Formula
a(n) = floor(n^2/4)^2.
From R. J. Mathar, Jul 08 2010: (Start)
G.f.: x^2*(1+2*x+6*x^2+2*x^3+x^4) / ( (1+x)^3*(1-x)^5 ).
a(n) = 2*a(n-1) +2*a(n-2) -6*a(n-3) +6*a(n-5) -2*a(n-6) -2*a(n-7) +a(n-8). (End)
a(n) = (2*n^4 -2*n^2 +1 +(-1)^n*(2*n^2 -1))/32. - Luce ETIENNE, Aug 11 2014
Sum_{n>=2} 1/a(n) = Pi^4/90 + Pi^2/3 - 3. - Amiram Eldar, Sep 17 2023
Comments