cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A081511 Duplicate of A030283.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 22, 30, 41, 50, 61, 70, 81, 90, 111, 200, 311, 400, 511, 600
Offset: 0

Views

Author

Keywords

A030284 a(n) is the least prime > a(n-1) whose digits do not appear in a(n-1).

Original entry on oeis.org

2, 3, 5, 7, 11, 23, 41, 53, 61, 73, 89, 101, 223, 401, 523, 601, 727, 809, 1117, 2003, 4111, 5003, 6121, 7039, 8111, 9007, 11113, 20029, 31147, 50069, 71143, 80209, 111143, 200009, 311111, 400009, 511111, 600043, 711121, 800053, 911111, 2000003, 4111147, 5000263, 7111199, 8000023, 9111161
Offset: 1

Views

Author

Keywords

Comments

Sequence is infinite. - T. D. Noe, Jun 06 2007
a(n) may never have all of the 4 digits 1, 3, 7, 9: if a(n) has 3 of these digits then a(n+1) ends with the fourth one. - Pierre CAMI, May 06 2011

Crossrefs

Programs

  • Haskell
    import Data.List (intersect)
    a030284 n = a030284_list !! (n-1)
    a030284_list = f [] a000040_list where
       f xs (p:ps) = if null $ intersect xs ys then p : f ys ps else f xs ps
                     where ys = show p
    -- Reinhard Zumkeller, Sep 21 2013
  • Mathematica
    ta={1};Do[s1=IntegerDigits[Part[ta, Length[ta]]]; s2=IntegerDigits[Prime[n]];If[Equal[Intersection[s1, s2], {}], Print[{Prime[n], Prime[n+1]}];ta=Append[ta, Prime[n]]], {n, 1, 1000000}];ta=Delete[ta, 1] (* Labos Elemer, Nov 18 2004 *)

Extensions

More terms from Labos Elemer, Nov 18 2004

A083490 Multiples of 2 in which there is no common digit in successive terms.

Original entry on oeis.org

2, 4, 6, 8, 10, 22, 30, 42, 50, 62, 70, 82, 90, 112, 300, 412, 500, 612, 700, 812, 900, 1112, 3000, 4112, 5000, 6112, 7000, 8112, 9000, 11112, 30000, 41112, 50000, 61112, 70000, 81112, 90000, 111112, 300000, 411112, 500000, 611112, 700000, 811112
Offset: 0

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), May 03 2003

Keywords

Comments

a(n) even, a(n) has no digits in common with a(n-1).

Crossrefs

Extensions

More terms from David Wasserman, Nov 16 2004

A083495 Multiples of 7 in which there is no common digit in successive terms.

Original entry on oeis.org

7, 14, 28, 35, 42, 56, 70, 84, 91, 203, 441, 525, 609, 714, 805, 917, 2002, 3115, 4004, 5117, 6006, 7112, 8008, 9114, 20006, 31115, 40026, 51135, 60004, 71113, 80024, 91119, 200004, 311115, 400008, 511112, 600033, 711144, 800002, 911113, 2000005
Offset: 0

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), May 03 2003

Keywords

Crossrefs

Extensions

More terms from David Wasserman, Nov 16 2004

A083497 Multiples of 9 in which there is no common digit in successive terms.

Original entry on oeis.org

9, 18, 27, 36, 45, 63, 72, 81, 90, 117, 225, 306, 414, 522, 603, 711, 828, 900, 1116, 2007, 3114, 5022, 6111, 7002, 8118, 9000, 11115, 20007, 31113, 40005, 61119, 70002, 81135, 90000, 111114, 200007, 311139, 400005, 611118, 700002, 811116, 900000
Offset: 0

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), May 03 2003

Keywords

Crossrefs

Extensions

More terms from David Wasserman, Nov 16 2004

A083491 Multiples of 3 in which there is no common digit in successive terms.

Original entry on oeis.org

3, 6, 9, 12, 30, 42, 51, 60, 72, 81, 90, 111, 204, 315, 402, 513, 600, 711, 804, 912, 3000, 4116, 5007, 6111, 7002, 8115, 9000, 11112, 30000, 41112, 50007, 61113, 70002, 81111, 90000, 111111, 200004, 311115, 400002, 511113, 600000, 711111, 800004
Offset: 0

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), May 03 2003

Keywords

Crossrefs

Extensions

Corrected and extended by David Wasserman, Nov 16 2004

A083492 Multiples of 4 in which there is no common digit in successive terms.

Original entry on oeis.org

4, 8, 12, 36, 40, 52, 60, 72, 80, 92, 100, 224, 300, 412, 500, 612, 700, 812, 900, 1112, 3000, 4112, 5000, 6112, 7000, 8112, 9000, 11112, 30000, 41112, 50000, 61112, 70000, 81112, 90000, 111112, 300000, 411112, 500000, 611112, 700000, 811112, 900000
Offset: 1

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), May 03 2003

Keywords

Crossrefs

Extensions

Corrected and extended by David Wasserman, Nov 16 2004

A083493 Multiples of 5 in which there is no common digit in successive terms.

Original entry on oeis.org

5, 10, 25, 30, 45, 60, 75, 80, 95, 100, 225, 300, 415, 600, 715, 800, 915, 2000, 3115, 4000, 5115, 6000, 7115, 8000, 9115, 20000, 31115, 40000, 51115, 60000, 71115, 80000, 91115, 200000, 311115, 400000, 511115, 600000, 711115, 800000, 911115
Offset: 0

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), May 03 2003

Keywords

Comments

For n >= 1, a(n) is the least multiple of 5 that is greater than a(n-1) and shares no digit with a(n-1). - Robert Israel, Sep 15 2024

Crossrefs

Formula

For n >= 22, a(n) = a(n-2) + 10 * a(n-8) - 10*a(n-10). - Robert Israel, Sep 15 2024

Extensions

More terms from David Wasserman, Nov 16 2004

A083494 Multiples of 6 in which there is no common digit in successive terms.

Original entry on oeis.org

6, 12, 30, 42, 60, 72, 84, 90, 114, 222, 300, 414, 522, 600, 714, 822, 900, 1116, 2004, 3138, 4002, 5118, 6000, 7122, 8004, 9126, 30000, 41112, 50058, 61116, 70002, 81114, 90000, 111114, 200022, 311118, 400002, 511116, 700002, 811116, 900000, 1111116
Offset: 0

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), May 03 2003

Keywords

Crossrefs

Extensions

Corrected and extended by David Wasserman, Nov 16 2004

A229364 a(1) = 1; for n > 1: a(n) = smallest odd number greater than a(n-1) which does not use any digit used by a(n-1).

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 23, 41, 53, 61, 73, 81, 93, 101, 223, 401, 523, 601, 723, 801, 923, 1001, 2223, 4001, 5223, 6001, 7223, 8001, 9223, 10001, 22223, 40001, 52223, 60001, 72223, 80001, 92223, 100001, 222223, 400001, 522223, 600001, 722223, 800001, 922223
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 21 2013

Keywords

Crossrefs

Programs

  • Haskell
    import Data.List (intersect)
    a229364 n = a229364_list !! (n-1)
    a229364_list = f "" [1, 3 ..] where
       f xs (o:os) = if null $ intersect xs ys then o : f ys os else f xs os
                     where ys = show o

Formula

From Chai Wah Wu, Oct 21 2024: (Start)
a(n) = a(n-2) + 10*a(n-8) - 10*a(n-10) for n > 15.
G.f.: x*(-10*x^14 - 20*x^13 - 20*x^12 - 20*x^11 - 20*x^10 - 10*x^9 + 20*x^8 + 30*x^7 + 14*x^6 + 4*x^5 + 4*x^4 + 4*x^3 + 4*x^2 + 3*x + 1)/((x - 1)*(x + 1)*(10*x^8 - 1)). (End)
Showing 1-10 of 16 results. Next