cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A030437 Decimal expansion of x such that x^x = Pi.

Original entry on oeis.org

1, 8, 5, 4, 1, 0, 5, 9, 6, 7, 9, 2, 1, 0, 2, 6, 4, 3, 2, 7, 4, 8, 3, 7, 0, 7, 1, 8, 4, 1, 0, 2, 9, 3, 2, 4, 5, 4, 2, 9, 2, 3, 2, 6, 7, 5, 0, 2, 7, 2, 6, 1, 9, 3, 0, 8, 4, 6, 9, 7, 5, 1, 0, 8, 4, 6, 8, 8, 0, 6, 2, 1, 2, 4, 8, 7, 3, 2, 6, 1, 6, 6, 5, 5, 9, 2, 4, 0, 3, 3, 6, 6, 1, 7, 0, 6, 8, 2, 4, 3, 8, 8, 0
Offset: 1

Views

Author

James L. Dean (csvcjld(AT)nomvs.lsumc.edu)

Keywords

Examples

			x = 1.8541059679210264327483707184102932454292... .
		

Crossrefs

Cf. A000796 (Pi), A100947 (continued fraction), A073243 (reciprocal).

Programs

  • Maple
    x^x=Pi; solve(%,x); evalf(%, 140); # solution is log(Pi)/LambertW(log(Pi)), where LambertW is the Omega function.
  • Mathematica
    x=Pi; RealDigits[Log[x]/ProductLog[Log[x]],10,6! ][[1]] (* Vladimir Joseph Stephan Orlovsky, Feb 11 2010 *)
    RealDigits[x/.FindRoot[x^x==Pi,{x,1},WorkingPrecision->120],10,120][[1]] (* Harvey P. Dale, Nov 29 2024 *)
  • PARI
    solve(x=1, 2, x^x-Pi) \\ Michel Marcus, Jan 14 2015
    
  • PARI
    exp(lambertw(log(Pi))) \\ Charles R Greathouse IV, Nov 11 2017

Extensions

More terms from Simon Plouffe
Better name from Jon E. Schoenfield, Dec 30 2014