cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A030485 Squares composed of digits {2, 5, 7}.

Original entry on oeis.org

25, 225, 7225, 27225, 55225, 2772225, 227557225, 277722225, 27777222225, 72272257225, 2777772222225, 25772527522225, 277777722222225, 2775552752755225, 27522257555772225, 27777777222222225, 77525222275255225, 257727727257277225, 722555225555275225, 2275752775775227225
Offset: 1

Views

Author

Patrick De Geest, Dec 11 1999

Keywords

Comments

We can easily prove that, except for the first term, all terms are of the form 100*m^2 + 100*m + 25 where mod(m, 10) is one of the numbers 1, 3, 6 or 8. Also we can show that all numbers of the form ((5 * 10^n - 5)/3)^2 where n is a natural number, are in the sequence. - Farideh Firoozbakht, Dec 09 2008

Crossrefs

Subsequence of A191486. Also subsequence of A017330. Cf. A030487.

Programs

  • Mathematica
    Flatten[Table[Select[FromDigits/@Tuples[{2, 5, 7}, n], IntegerQ[Sqrt[#]] &], {n, 17}]] (* The program takes a long time to run *) (* Harvey P. Dale, Jan 18 2015 *)
    Select[(5Range[1, 9999, 2])^2, Complement[IntegerDigits[#], {2, 5, 7}] == {} &] (* Alonso del Arte, Feb 19 2020 *)
  • PARI
    fromTernary(n, d)=sum(i=0,d-1,[2,5,7][(n\3^i)%3+1]*10^i)
    v=List([25]);for(d=0,16,for(n=0,3^d-1,if(issquare(t=225+1000*fromTernary(n,d)), listput(v,t); print1(t", ")))); Vec(v) \\ Charles R Greathouse IV, Dec 22 2012

Formula

a(n) = A030487(n)^2. - M. F. Hasler, Dec 23 2012

Extensions

Extended and corrected by author, May 08 2000
a(17)-a(19) from Farideh Firoozbakht, Dec 09 2008

A275971 Numbers n such that the decimal digits of n^2 are all prime.

Original entry on oeis.org

5, 15, 85, 165, 235, 485, 1665, 1885, 4835, 5765, 7585, 15085, 15885, 16665, 18365, 18915, 22885, 27115, 27885, 50235, 57665, 58115, 72335, 85635, 87885, 150915, 166665, 182415, 194235, 194365, 229635, 240365, 268835, 503515, 507665, 524915, 568835, 570415, 577515, 581165
Offset: 1

Views

Author

Zak Seidov, Aug 15 2016

Keywords

Comments

Apparently 5, 235 and 72335 are the only terms using digits {2,3,5,7}.
a(n)/5 = {1, 3, 17, 33, 47, 97, 333, 377, 967, 1153, 1517, 3017, 3177, 3333, ...}; terms b(n) that have n 3's must be in the sequence since (5 b(n))^2 yields the decimal number 2 followed by (n-1) 7's then n 2's, and ending in 5 (i.e., 225, 27225, 2772225). Thus 5 b(n) = {15, 165, 1665, 16665, etc.} appears in this sequence. - Michael De Vlieger, Aug 15 2016
All terms are odd multiples of 5 (A017329), i.e., must end in 5, which is the only digit whose square ends in a prime digit. The sequence contains A030487 as an infinite proper subsequence which in turn contains all numbers of the form (5*10^n-5)/3 (these are the above 5 b(n)) as a proper subsequence. - M. F. Hasler, Sep 16 2016

Examples

			72335^2 = 5232352225 = A191486(23).
		

Crossrefs

Programs

  • Mathematica
    w = Boole@! PrimeQ@ # & /@ RotateLeft@ Range[0, 9]; Sqrt@ Select[Range[10^6]^2, Total@ Pick[DigitCount@ #, w, 1] == 0 &] (* Michael De Vlieger, Aug 15 2016 *)
  • PARI
    is(n)=#setintersect(Set(digits(n^2)), [0, 1, 4, 6, 8, 9])==0 \\ Charles R Greathouse IV, Sep 16 2016
    
  • Python
    def aupto(limit):
      alst = []
      for k in range(1, limit+1):
        if set(str(k*k)) <= set("2357"): alst.append(k)
      return alst
    print(aupto(10**6)) # Michael S. Branicky, May 15 2021

Formula

a(n) = sqrt(A191486(n)).

Extensions

More terms from Michel Marcus, Aug 17 2016
Showing 1-2 of 2 results.