A030495 a(n) = (n+1)! + n.
1, 3, 8, 27, 124, 725, 5046, 40327, 362888, 3628809, 39916810, 479001611, 6227020812, 87178291213, 1307674368014, 20922789888015, 355687428096016, 6402373705728017, 121645100408832018, 2432902008176640019, 51090942171709440020, 1124000727777607680021, 25852016738884976640022
Offset: 0
Keywords
Examples
a(5) = (5+1)!+5 = 725.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Aria Chen, Tyler Cummins, Rishi De Francesco, Jate Greene, Tanya Khovanova, Alexander Meng, Tanish Parida, Anirudh Pulugurtha, Anand Swaroop, and Samuel Tsui, Card Tricks and Information, arXiv:2405.21007 [math.HO], 2024. See p. 7.
- Pr. Malik Magdon-Ismail, Communicating the Card puzzle.
- Shai Simonson and Tara S. Holm, Using A Card Trick To Teach Discrete Mathematics, PRIMUS: Problems, Resources, and Issues in Mathematics Undergraduate Studies, Volume 13, Issue 3, 2003, DOI:10.1080/10511970308984061.
Programs
-
Magma
[Factorial(n+1)+ n: n in [0..30]]; // Vincenzo Librandi, Feb 04 2013
-
Maple
A030495:=n->(n+1)! + n; seq(A030495(n), n=0..40); # Wesley Ivan Hurt, Mar 04 2014
-
Mathematica
Table[(n+1)!+n, {n, 0, 40}] (* Vladimir Joseph Stephan Orlovsky, May 19 2011 *)
Formula
a(n) = n + Sum_{k=1..n-1} k*k!.
E.g.f.: 1/(1 - x)^2 + exp(x)*x . - Stefano Spezia, Jun 06 2024
Extensions
Better description from Jason Earls, Mar 24 2001
Comments