A030511 Graham-Sloane-type lower bound on the size of a ternary (n,3,3) constant-weight code.
2, 6, 10, 16, 24, 32, 42, 54, 66, 80, 96, 112, 130, 150, 170, 192, 216, 240, 266, 294, 322, 352, 384, 416, 450, 486, 522, 560, 600, 640, 682, 726, 770, 816, 864, 912, 962, 1014, 1066, 1120, 1176, 1232, 1290, 1350, 1410, 1472, 1536, 1600
Offset: 3
Links
- Craig Knecht, Maximum number of enneiamonds in a hexagon.
- Katherine E. Stange, Integral points on elliptic curves and explicit valuations of division polynomials arXiv:1108.3051 [math.NT], 2011-2014.
- M. Svanstrom, A lower bound for ternary constant weight codes, IEEE Trans. on Information Theory, Vol. 43, No. 5 (Sep. 1997), pp. 1630-1632.
- Index entries for linear recurrences with constant coefficients, signature (2,-1,1,-2,1).
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{2,-1,1,-2,1},{2,6,10,16,24},50] (* Harvey P. Dale, Mar 03 2016 *)
-
Python
def A030511(n): return ((n-1)**2<<1)//3 # Chai Wah Wu, Aug 04 2025
Formula
a(n) = 2 * (n - 1)^2 / 3 if n==1 (mod 3), a(n) = 2 * n * (n - 2) / 3 otherwise.
G.f.: -2*x^3*(1 + x) / ( (1 + x + x^2)*(x - 1)^3 ). - R. J. Mathar, Aug 25 2011
a(n) = 2*A000212(n-1). - R. J. Mathar, Aug 25 2011
a(n) = floor( (2/3)*(n-1)^2 ). - Wesley Ivan Hurt, Jun 19 2013
a(n) = (2*(n - 2)*n - (-1)^floor(2*(n-2)/3) + 1)/3. - Bruno Berselli, Aug 08 2013
a(n) = a(n-1) + 2*floor((n-1)*2/3). - Gionata Neri, Apr 26 2015
a(n) = floor((n-2)*(n-1)/3) + floor((n-1)*n/3) = floor((n-1)*(n+1)/3) + floor((n-1)*(n-3)/3). - Bruno Berselli, Mar 02 2017
Sum_{n>=3} 1/a(n) = Pi^2/36 + Pi/(4*sqrt(3)) + 3/8. - Amiram Eldar, Sep 24 2022
E.g.f.: 2*exp(-x/2)*(exp(3*x/2)*(1 + 3*x*(x - 1)) - cos(sqrt(3)*x/2) + sqrt(3)*sin(sqrt(3)*x/2))/9. - Stefano Spezia, Oct 28 2022
Comments