cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A333798 Erroneous version of A030525.

Original entry on oeis.org

0, 1, 2, 5, 10, 21, 41, 85, 167, 273, 608, 1421, 2823
Offset: 4

Views

Author

Keywords

Comments

Included in accordance with the OEIS policy of listing incorrect but published sequences.

A026118 Number of polyhexes of class PF2 (with two catafusenes annealated to pyrene).

Original entry on oeis.org

5, 20, 100, 431, 1937, 8548, 38199, 171001, 770934, 3492251, 15905897, 72785480, 334571647, 1544203452, 7154247842, 33260560977, 155126129968, 725639264293, 3403612632885, 16004969728270, 75437244856898, 356337397010035, 1686618801843050
Offset: 6

Views

Author

Keywords

Comments

See reference for precise definition.
From Petros Hadjicostas, Jan 13 2019: (Start)
This sequence is defined by eq. (34), p. 536, in Cyvin et al. (1992). It is denoted by 2^Q_{4+n} (for n >= 2). Thus, a(n+4) = 2^Q_{4+n} for n >= 2 (and that is why the offset here is 6).
For n >= 2, we have a(n+4) = (3/4)*(1 + (-1)^n)*N(floor(n/2)) + (1/4)*(L(n) + 13*Sum_{1 <= i <= n-1} N(i)*N(n-i)), where N(n) = A002212(n) and L(n) = A039658(n).
The sequence (N(n): n >= 1) = (A002212(n): n >= 1) is given by eq. (1), p. 533, in Cyvin et al. (1992), while its g.f. is given by eqs. (2)-(4), p. 1174, in Cyvin et al. (1994). (The g.f. of N(n) = A002212(n) appears also in Harary and Read (1970) as eq. (9) on p. 4.)
The sequence (L(n): n >= 1) = (A039658(n): n >= 1) is given by eq. (22), p. 535, in Cyvin et al (1992), while its g.f. is given by eq. (9), p. 1175, in Cyvin et al. (1994).
The g.f. of the current sequence (a(m): m >= 6) (see below) is given in eq. (A2), p. 1180, in Cyvin et al. (1994), but it can be derived by the above formulae using standard techniques for the calculation of g.f.'s.
For the number of polyhexes of class PF2, we have 1^Q_h = A026106(h) (h >= 5, one catafusene annealated to pyrene), 3^Q_h = A026298(h) (h >= 7, three catafusenes annealated to pyrene), and 4^Q_h = A030519(h) (h >= 8, four catafusenes annealated to pyrene).
(Apparently, the word "annealated" in Cyvin et al. (1992) is spelled "annelated" in Cyvin et al. (1994).)
(End)

Crossrefs

Formula

From Petros Hadjicostas, Jan 14 2019: (Start)
a(n+4) = (3/4)*(1 + (-1)^n)*N(floor(n/2)) + (1/4)*(L(n) + 13*Sum_{1 <= i <= n-1} N(i)*N(n-i)) for n >= 2, where N(n) = A002212(n) and L(n) = A039658(n).
G.f.: (x^2/4)*(1-x)^(-1)*(10 - 48*x + 74*x^2 - 38*x^3) - (x^2/8)*[13*(1 - 3*x)*(1 - x)^(1/2)*(1 - 5*x)^(1/2) + (1 - x)^(-1)*(7 - 5*x)*(1 - x^2)^(1/2)*(1 - 5*x^2)^(1/2)] (see eq. (A2), p. 1180, in Cyvin et al. (1994)).
(End)

Extensions

Name edited by Petros Hadjicostas, Jan 13 2019
Terms a(17)-a(28) computed by Petros Hadjicostas, Jan 13 2019 using a g.f. in Cyvin et al. (1994)

A030529 Number of polyhexes of class PF2 with a particular symmetry.

Original entry on oeis.org

0, 0, 1, 4, 17, 66, 269, 1102, 4635, 19768, 85659, 375524, 1664015, 7438862, 33515027, 152016610, 693622315, 3181516040, 14661568795, 67850245684, 315187594779, 1469195413102, 6869889480447, 32215398047474, 151467333043437, 713881813137776, 3372142135461789
Offset: 2

Views

Author

Keywords

Comments

See references for precise definition.
Column D_{2h}(b) and Eq. 50 in Cyvin et al. (1994). - Sean A. Irvine, Mar 27 2021

Crossrefs

Programs

  • PARI
    A055879(n)= my(A); if( n<1, 0, n--; A = O(x); for( k = 0, n\2, A = 1 / (1 - x - x^2 / (1 + x - x^2 * A))); polcoeff( A, n));
    b(n) = (A055879(2*n+1) - A055879(2*n) - A055879(n)) / 2;
    a(n) = if( n<=2, 0, b(n - 2)); \\ Michel Marcus, Apr 03 2020

Formula

a(2)=0, a(n+2) = (M(2*n+1) - M(2*n) - M(n)) / 2 where M(n) = A055879(n) [Cyvin Eq. (54)]. - Sean A. Irvine, Apr 03 2020

Extensions

More terms from Sean A. Irvine, Apr 03 2020

A030532 Number of polyhexes of class PF2 with symmetry point group C_s.

Original entry on oeis.org

0, 1, 6, 35, 168, 807, 3738, 17326, 79909, 369330, 1709087, 7929590, 36880231, 171981241, 804008476, 3767969067, 17699758030, 83328230588, 393123455667, 1858351021018, 8801159427825, 41756067216508, 198437454009869, 944521139813575, 4502419756667924
Offset: 4

Views

Author

Keywords

Comments

See reference for precise definition.
Cyvin has incorrect a(13)=369366 and a(14)=1709123 in Table III due to using incorrect values for A026298(13) and A026298(14) in Table II.

Crossrefs

Programs

  • PARI
    L(n) = my(x = 'x + O('x^(n+4))); polcoeff((1+x)*(1-3*x^2-sqrt(1-6*x^2+5*x^4))/(2*x^2*(1-x)), n); \\ A039658
    Lp(n) = my(x = 'x + O('x^(n+4))); polcoeff((1+x)*(1-6*x^2+7*x^4-(1-3*x^2)*sqrt(1-6*x^2+5*x^4))/(2*x^4*(1-x)), n); \\ A039660
    M(n)= my(A); if( n<1, 0, n--; A = O(x); for( k = 0, n\2, A = 1 / (1 - x - x^2 / (1 + x - x^2 * A))); polcoeff( A, n)); \\ A055879
    N(n) = polcoeff( (1 - x - sqrt(1 - 6*x + 5*x^2 + x^2 * O(x^n))) / 2, n+1); \\ A002212
    Mp(n) = N(n) - sum(j=0, n-1, N(j)); \\ A039919
    b(n) = N(n+3) - 6*N(n+2) - Mp(floor((n+1)/2)) + (41*N(n+1)-21*N(n)-L(n))/4 - (M(n+3)-M(n+2)+M(n)-if (!(n%2),M(n/2))+Lp(n))/2;
    a(n) = if (n<=4, 0, b(n-4)); \\ Michel Marcus, Apr 05 2020

Formula

a(n+4) = N(n+3) - 6*N(n+2) - M'(floor((n+1)/2)) + (41*N(n+1)-21*N(n)-L(n))/4 - (M(n+3)-M(n+2)+M(n)-e(n)*M(n/2)+L'(n))/2 where N(n)=A002212(n), M(n)=A055879(n), M'(n)=A039919(n), L(n)=A039658(n), L'(n)=A039660(n), e(n)=1 if n is even and 0 if n is odd. - Sean A. Irvine, Apr 03 2020

Extensions

a(13) and a(14) corrected, title improved, and more terms from Sean A. Irvine, Apr 03 2020

A030534 Number of polyhexes of class PF2.

Original entry on oeis.org

1, 2, 10, 40, 185, 828, 3805, 17411, 80177, 369675, 1710173, 7931011, 36884730, 171987194, 804027444, 3767994408, 17699839325, 83328339997, 393123808821, 1858351499207, 8801160980038, 41756069328689, 198437460900302, 944521149228740, 4502419787519360
Offset: 4

Views

Author

Keywords

Comments

See reference for precise definition.
Cyvin has incorrect a(13)=369639 and a(14)=1710137 in Table III due to using incorrect values for A026298(13) and A026298(14) in Table II. - Sean A. Irvine, Apr 02 2020

Crossrefs

Formula

a(4)=1, a(n) = A026106(n) + A026118(n) + A026298(n) + A030519(n) for n > 4. - Sean A. Irvine, Apr 02 2020

Extensions

a(13) and a(14) corrected and more terms from Sean A. Irvine, Apr 02 2020

A026106 Number of polyhexes of class PF2 (with one catafusene annealated to pyrene).

Original entry on oeis.org

2, 5, 16, 55, 208, 817, 3336, 13935, 59406, 257079, 1126948, 4992421, 22318048, 100546543, 456055730, 2080872845, 9544572590, 43984730855, 203550840696, 945562887981, 4407586685688, 20609668887723, 96646196091276, 454402001079165
Offset: 5

Views

Author

Keywords

Comments

See reference for precise definition.
From Petros Hadjicostas, Jan 12 2019: (Start)
In Cyvin et al. (1992), sequence (N(m): m >= 1) = (A002212(m): m >= 1) is defined by eq. (1), p. 533. (We may let N(0) := A002212(0) = 1.)
Sequence (M(m): m >= 1) is defined by eq. (13), p. 534. We have M(2*m) = M(2*m-1) = A007317(m) for m >= 1.
Sequences (N(m): m >= 1) and (M(m): m >= 1) appear in Table 1, p. 533.
The current sequence is denoted by 1^Q_(4+n) (with n = 1,2,3,...). Thus, a(n+4) = 1^Q_(4+n) for n >= 1; i.e., a(m) = 1^Q_{m} for m >= 5. We have 1^Q_(4+n) = (1/2)*(3*N(n) + M(n)) for n >= 1. See eq. (33), p. 536.
Sequence (1^Q_(4+n): n >= 1) appears in Table II, p. 537.
We may use the many formulae in the documentations of sequences A002212 and A007317 in order to create complicated formulae and recurrence relations for (a(n): n >= 5). We omit the details.
The first g.f. below is a combination of the g.f. for sequence A002212 by John W. Layman in 2001 and the g.f. for sequence A007317 by Ira M. Gessel and Jang Soo Kim in 2010.
The second g.f. appears in eq. (A1), p. 1180, in Cyvin et al. (1994). It is algebraically equivalent to the first g.f.
(Apparently, the word "annealated" in Cyvin et al. (1992) is spelled "annelated" in Cyvin et al. (1994).)
(End)

Crossrefs

Programs

  • Maple
    bb := proc(x) (1/4)*x^3*(4-8*x-3*sqrt((1-x)*(1-5*x))-(x+1)*sqrt((1-5*x^2)/(1-x^2))) end proc;
    taylor(bb(x), x = 0, 50); # Petros Hadjicostas, Jan 12 2019
  • Mathematica
    (1/4) x^3 (4 - 8x - 3Sqrt[(1-x)(1-5x)] - (x+1) Sqrt[(1-5x^2)/(1-x^2)]) + O[x]^29 // CoefficientList[#, x]& // Drop[#, 5]& (* Jean-François Alcover, Apr 24 2020, from Maple *)

Formula

From Petros Hadjicostas, Jan 12 2019: (Start)
For n >= 1, a(n+4) = (1/2)*(3*A002212(n) + A007317(floor((n+1)/2))).
G.f.: (x^3/4)*(4 - 8*x - 3*sqrt(1 - 6*x + 5*x^2) - (x + 1)*sqrt((1 - 5*x^2)/(1 - x^2))).
G.f.: x^3*(1 - 2*x) - (x^3/4)*(3*(1 - x)^(1/2)*(1 - 5*x)^(1/2) + (1 - x)^(-1)*(1 - x^2)^(1/2)*(1 - 5*x^2)^(1/2)) (see eq. (A1), p. 1180, in Cyvin et al. (1994)).
(End)

Extensions

Name edited by Petros Hadjicostas, Jan 12 2019
Terms a(17)-a(28) computed by Petros Hadjicostas, Jan 12 2019

A026298 Number of polyhexes of class PF2.

Original entry on oeis.org

4, 28, 176, 950, 4908, 24402, 119240, 575348, 2757460, 13157752, 62638788, 297832008, 1415550920, 6728600060, 31998023632, 152271569872, 725231959452, 3457304575812, 16497751608120, 78804354881238, 376806016649964, 1803539487096138, 8641075826669256, 41441524062045660
Offset: 7

Views

Author

Keywords

Comments

See reference for precise definition.
Cyvin et al. has incorrect a(13) = 119204 and a(14) = 575312 due to using incorrect value for A039919(5); cf. A039659. - Sean A. Irvine, Sep 24 2019

Crossrefs

Formula

a(n + 4) = 3 * (N(n+2) - 6*N(n+1) + 8*N(n)) + A039919(floor((n+1)/2)) where N(n) = A002212(n) [from Cyvin]. - Sean A. Irvine, Sep 24 2019

Extensions

Corrected and extended by Sean A. Irvine, Sep 24 2019

A030519 Number of polyhexes of class PF2 with four catafusenes annealated to pyrene.

Original entry on oeis.org

2, 13, 101, 619, 3641, 20028, 106812, 554352, 2828660, 14244878, 71077246, 352184306, 1736118578, 8525182798, 41741378126, 203929434766, 994680883360, 4845761306611, 23586192274443, 114731539477465, 557859497501007, 2711772157178038, 13180227306740726
Offset: 8

Views

Author

Keywords

Comments

See reference for precise definition.

Crossrefs

Programs

  • PARI
    Lp(n)=my(x = 'x + O('x^(n+4))); polcoeff((1+x)*(1-6*x^2+7*x^4-(1-3*x^2)*sqrt(1-6*x^2+5*x^4))/(2*x^4*(1-x)), n); \\ A039660
    M(n)= my(A); if( n<1, 0, n--; A = O(x); for( k = 0, n\2, A = 1 / (1 - x - x^2 / (1 + x - x^2 * A))); polcoeff( A, n)); \\ A055879
    N(n) = polcoeff( (1 - x - sqrt(1 - 6*x + 5*x^2 + x^2 * O(x^n))) / 2, n+1); \\ A002212
    b(n) = N(n+3) - 9*N(n+2) + 25*N(n+1) - 21*N(n) + (M(n+3) - M(n+2) - 3*M(n+1) + 3*M(n) + Lp(n))/2;
    a(n) = b(n-4); \\ Michel Marcus, Apr 03 2020

Formula

a(n+4) = N(n+3) - 9*N(n+2) + 25*N(n+1) - 21*N(n) + (M(n+3) - M(n+2) - 3*M(n+1) + 3*M(n) + L'(n))/2 where N(n)=A002212(n), M(n)=A055879(n), and L'(n)=A039660(n) for n >= 4. - Sean A. Irvine, Apr 02 2020

Extensions

More terms and title improved by Sean A. Irvine, Apr 02 2020

A030520 Number of polyhexes of class PF2 with C_{2n} symmetry.

Original entry on oeis.org

0, 1, 5, 20, 82, 335, 1402, 5949, 25652, 111963, 494157, 2201270, 9886034, 44712737, 203489627, 931191850, 4282171470, 19778577235, 91715812335, 426824400684, 1992828161414, 9332192498397, 43821128181652, 206288470970025, 973361629499032, 4602638827207605
Offset: 2

Views

Author

Keywords

Comments

See reference for precise definition.

Crossrefs

Extensions

Title improved, a(2)=0 inserted, and more terms from Sean A. Irvine, Apr 02 2020
Showing 1-9 of 9 results.