Original entry on oeis.org
0, 1, 2, 5, 10, 21, 41, 85, 167, 273, 608, 1421, 2823
Offset: 4
A026118
Number of polyhexes of class PF2 (with two catafusenes annealated to pyrene).
Original entry on oeis.org
5, 20, 100, 431, 1937, 8548, 38199, 171001, 770934, 3492251, 15905897, 72785480, 334571647, 1544203452, 7154247842, 33260560977, 155126129968, 725639264293, 3403612632885, 16004969728270, 75437244856898, 356337397010035, 1686618801843050
Offset: 6
- S. J. Cyvin, Zhang Fuji, B. N. Cyvin, Guo Xiaofeng, and J. Brunvoll, Enumeration and classification of benzenoid systems. 32. Normal perifusenes with two internal vertices, J. Chem. Inform. Comput. Sci., 32 (1992), 532-540.
- S. J. Cyvin, B. N. Cyvin, J. Brunvoll, and E. Brendsdal, Enumeration and classification of certain polygonal systems representing polycyclic conjugated hydrocarbons: annelated catafusenes, J. Chem. Inform. Comput. Sci., 34 (1994), 1174-1180.
- F. Harary and R. C. Read, The enumeration of tree-like polyhexes, Proc. Edinburgh Math. Soc. (2) 17 (1970), 1-13.
- Eric Weisstein's World of Mathematics, Fusenes.
- Eric Weisstein's World of Mathematics, Polyhex.
Cf.
A002212,
A026106,
A026118,
A026298,
A030519,
A030520,
A030525,
A030529,
A030532,
A030534,
A039658.
Terms a(17)-a(28) computed by
Petros Hadjicostas, Jan 13 2019 using a g.f. in Cyvin et al. (1994)
A030529
Number of polyhexes of class PF2 with a particular symmetry.
Original entry on oeis.org
0, 0, 1, 4, 17, 66, 269, 1102, 4635, 19768, 85659, 375524, 1664015, 7438862, 33515027, 152016610, 693622315, 3181516040, 14661568795, 67850245684, 315187594779, 1469195413102, 6869889480447, 32215398047474, 151467333043437, 713881813137776, 3372142135461789
Offset: 2
- S. J. Cyvin, J. Brunvoll, and B. N. Cyvin, Harary-Read numbers for catafusenes: Complete classification according to symmetry, Journal of mathematical chemistry 9.1 (1992): 19-31 and 33-38. See pages 30 and 38.
- S. J. Cyvin, B. N. Cyvin, J. Brunvoll and E. Brendsdal, Enumeration and Classification of Certain Polygonal Systems Representing Polycyclic Conjugated Hydrocarbons: Annelated Catafusenes, Journal of Chemical Information and Modeling [formerly, J. Chem. Inform. Comput. Sci.], 34 (1994), pp. 1174-1180.
- S. J. Cyvin, Zhang Fuji, B. N. Cyvin, Guo Xiaofeng, and J. Brunvoll, Enumeration and classification of benzenoid systems. 32. Normal perifusenes with two internal vertices, J. Chem. Inform. Comput. Sci., 32 (1992), 532-540.
- Sean A. Irvine, Java program (github)
-
A055879(n)= my(A); if( n<1, 0, n--; A = O(x); for( k = 0, n\2, A = 1 / (1 - x - x^2 / (1 + x - x^2 * A))); polcoeff( A, n));
b(n) = (A055879(2*n+1) - A055879(2*n) - A055879(n)) / 2;
a(n) = if( n<=2, 0, b(n - 2)); \\ Michel Marcus, Apr 03 2020
A030532
Number of polyhexes of class PF2 with symmetry point group C_s.
Original entry on oeis.org
0, 1, 6, 35, 168, 807, 3738, 17326, 79909, 369330, 1709087, 7929590, 36880231, 171981241, 804008476, 3767969067, 17699758030, 83328230588, 393123455667, 1858351021018, 8801159427825, 41756067216508, 198437454009869, 944521139813575, 4502419756667924
Offset: 4
-
L(n) = my(x = 'x + O('x^(n+4))); polcoeff((1+x)*(1-3*x^2-sqrt(1-6*x^2+5*x^4))/(2*x^2*(1-x)), n); \\ A039658
Lp(n) = my(x = 'x + O('x^(n+4))); polcoeff((1+x)*(1-6*x^2+7*x^4-(1-3*x^2)*sqrt(1-6*x^2+5*x^4))/(2*x^4*(1-x)), n); \\ A039660
M(n)= my(A); if( n<1, 0, n--; A = O(x); for( k = 0, n\2, A = 1 / (1 - x - x^2 / (1 + x - x^2 * A))); polcoeff( A, n)); \\ A055879
N(n) = polcoeff( (1 - x - sqrt(1 - 6*x + 5*x^2 + x^2 * O(x^n))) / 2, n+1); \\ A002212
Mp(n) = N(n) - sum(j=0, n-1, N(j)); \\ A039919
b(n) = N(n+3) - 6*N(n+2) - Mp(floor((n+1)/2)) + (41*N(n+1)-21*N(n)-L(n))/4 - (M(n+3)-M(n+2)+M(n)-if (!(n%2),M(n/2))+Lp(n))/2;
a(n) = if (n<=4, 0, b(n-4)); \\ Michel Marcus, Apr 05 2020
a(13) and a(14) corrected, title improved, and more terms from
Sean A. Irvine, Apr 03 2020
A030534
Number of polyhexes of class PF2.
Original entry on oeis.org
1, 2, 10, 40, 185, 828, 3805, 17411, 80177, 369675, 1710173, 7931011, 36884730, 171987194, 804027444, 3767994408, 17699839325, 83328339997, 393123808821, 1858351499207, 8801160980038, 41756069328689, 198437460900302, 944521149228740, 4502419787519360
Offset: 4
a(13) and a(14) corrected and more terms from
Sean A. Irvine, Apr 02 2020
A026106
Number of polyhexes of class PF2 (with one catafusene annealated to pyrene).
Original entry on oeis.org
2, 5, 16, 55, 208, 817, 3336, 13935, 59406, 257079, 1126948, 4992421, 22318048, 100546543, 456055730, 2080872845, 9544572590, 43984730855, 203550840696, 945562887981, 4407586685688, 20609668887723, 96646196091276, 454402001079165
Offset: 5
- S. J. Cyvin, Zhang Fuji, B. N. Cyvin, Guo Xiaofeng, and J. Brunvoll, Enumeration and classification of benzenoid systems. 32. Normal perifusenes with two internal vertices, J. Chem. Inform. Comput. Sci., 32 (1992), 532-540.
- S. J. Cyvin, B. N. Cyvin, J. Brunvoll, and E. Brendsdal, Enumeration and classification of certain polygonal systems representing polycyclic conjugated hydrocarbons: annelated catafusenes, J. Chem. Inform. Comput. Sci., 34 (1994), 1174-1180.
- Eric Weisstein's World of Mathematics, Fusenes.
- Eric Weisstein's World of Mathematics, Polyhex.
Cf.
A002212,
A007317,
A026106,
A026118,
A026298,
A030519,
A030520,
A030525,
A030529,
A030532,
A030534,
A039658.
-
bb := proc(x) (1/4)*x^3*(4-8*x-3*sqrt((1-x)*(1-5*x))-(x+1)*sqrt((1-5*x^2)/(1-x^2))) end proc;
taylor(bb(x), x = 0, 50); # Petros Hadjicostas, Jan 12 2019
-
(1/4) x^3 (4 - 8x - 3Sqrt[(1-x)(1-5x)] - (x+1) Sqrt[(1-5x^2)/(1-x^2)]) + O[x]^29 // CoefficientList[#, x]& // Drop[#, 5]& (* Jean-François Alcover, Apr 24 2020, from Maple *)
A026298
Number of polyhexes of class PF2.
Original entry on oeis.org
4, 28, 176, 950, 4908, 24402, 119240, 575348, 2757460, 13157752, 62638788, 297832008, 1415550920, 6728600060, 31998023632, 152271569872, 725231959452, 3457304575812, 16497751608120, 78804354881238, 376806016649964, 1803539487096138, 8641075826669256, 41441524062045660
Offset: 7
A030519
Number of polyhexes of class PF2 with four catafusenes annealated to pyrene.
Original entry on oeis.org
2, 13, 101, 619, 3641, 20028, 106812, 554352, 2828660, 14244878, 71077246, 352184306, 1736118578, 8525182798, 41741378126, 203929434766, 994680883360, 4845761306611, 23586192274443, 114731539477465, 557859497501007, 2711772157178038, 13180227306740726
Offset: 8
-
Lp(n)=my(x = 'x + O('x^(n+4))); polcoeff((1+x)*(1-6*x^2+7*x^4-(1-3*x^2)*sqrt(1-6*x^2+5*x^4))/(2*x^4*(1-x)), n); \\ A039660
M(n)= my(A); if( n<1, 0, n--; A = O(x); for( k = 0, n\2, A = 1 / (1 - x - x^2 / (1 + x - x^2 * A))); polcoeff( A, n)); \\ A055879
N(n) = polcoeff( (1 - x - sqrt(1 - 6*x + 5*x^2 + x^2 * O(x^n))) / 2, n+1); \\ A002212
b(n) = N(n+3) - 9*N(n+2) + 25*N(n+1) - 21*N(n) + (M(n+3) - M(n+2) - 3*M(n+1) + 3*M(n) + Lp(n))/2;
a(n) = b(n-4); \\ Michel Marcus, Apr 03 2020
A030520
Number of polyhexes of class PF2 with C_{2n} symmetry.
Original entry on oeis.org
0, 1, 5, 20, 82, 335, 1402, 5949, 25652, 111963, 494157, 2201270, 9886034, 44712737, 203489627, 931191850, 4282171470, 19778577235, 91715812335, 426824400684, 1992828161414, 9332192498397, 43821128181652, 206288470970025, 973361629499032, 4602638827207605
Offset: 2
Title improved, a(2)=0 inserted, and more terms from
Sean A. Irvine, Apr 02 2020
Showing 1-9 of 9 results.
Comments