A049374 A triangle of numbers related to triangle A030527.
1, 6, 1, 42, 18, 1, 336, 276, 36, 1, 3024, 4200, 960, 60, 1, 30240, 66024, 23400, 2460, 90, 1, 332640, 1086624, 557424, 87360, 5250, 126, 1, 3991680, 18805248, 13349952, 2916144, 255360, 9912, 168, 1, 51891840, 342486144, 325854144, 95001984
Offset: 1
Examples
Triangle begins 1; 6, 1; 42, 18, 1; 336, 276, 36, 1; 3024, 4200, 960, 60, 1; 30240, 66024, 23400, 2460, 90, 1; 332640, 1086624, 557424, 87360, 5250, 126, 1; E.g., row polynomial E(3,x) = 42*x + 18*x^2 + x^3. a(4,2) = 276 = 4*(6*7) + 3*(6*6) from the two types of unordered 2-forests of unary increasing trees associated with the two m=2 parts partitions (1,3) and (2^2) of n=4. The first type has 4 increasing labelings, each coming in (1)*(1*6*7)=42 colored versions, e.g., ((1c1),(2c1,3c6,4c3)) with lcp for vertex label l and color p. Here the vertex labeled 3 has depth j=1, hence 6 colors, c1..c6, can be chosen and the vertex labeled 4 with j=2 can come in 7 colors, e.g., c1..c7. Therefore there are 4*((1)*(1*6*7))=168 forests of this (1,3) type. Similarly the (2,2) type yields 3*((1*6)*(1*6))=108 such forests, e.g., ((1c1,3c4)(2c1,4c6)) or ((1c1,3c5)(2c1,4c2)), etc. - _Wolfdieter Lang_, Oct 12 2007
Links
- Muniru A Asiru, Table of n, a(n) for n = 1..1275
- W. Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
- W. Lang, First ten rows.
Programs
-
GAP
Flat(List([1..10],n->Factorial(n)*List([1..n],k->Sum([1..k],j->(-1)^(k-j)*Binomial(k,j)*Binomial(n+5*j-1,5*j-1)/(5^k*Factorial(k)))))); # Muniru A Asiru, Jun 23 2018
-
Maple
# The function BellMatrix is defined in A264428. # Adds (1,0,0,0, ..) as column 0. BellMatrix(n -> (n+5)!/120, 10); # Peter Luschny, Jan 28 2016
-
Mathematica
a[n_, k_] = n!*Sum[(-1)^(k-j)*Binomial[k, j]*Binomial[n + 5j - 1, 5j - 1]/(5^k*k!), {j, 1, k}] ; Flatten[Table[a[n, k], {n, 1, 9}, {k, 1, n}] ][[1 ;; 40]] (* Jean-François Alcover, Jun 01 2011, after Vladimir Kruchinin *) BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len-1}, {k, 0, len-1}]]; rows = 10; M = BellMatrix[(#+5)!/120&, rows]; Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 23 2018, after Peter Luschny *)
-
Maxima
a(n,k)=(n!*sum((-1)^(k-j)*binomial(k,j)*binomial(n+5*j-1,5*j-1),j,1,k))/(5^k*k!); /* Vladimir Kruchinin, Apr 01 2011 */
-
PARI
a(n,k)=(n!*sum(j=1,k,(-1)^(k-j)*binomial(k,j)*binomial(n+5*j-1,5*j-1)))/(5^k*k!); for(n=1,12,for(k=1,n,print1(a(n,k),", "));print()); /* print triangle */ /* Joerg Arndt, Apr 01 2011 */
Formula
a(n, m) = n!*A030527(n, m)/(m!*5^(n-m)); a(n, m) = (5*m+n-1)*a(n-1, m) + a(n-1, m-1), n >= m >= 1; a(n, m)=0, n < m; a(n, 0) := 0; a(1, 1)=1. E.g.f. for m-th column: ((x*(5 - 10*x + 10*x^2 - 5*x^3 + x^4)/(5*(1-x)^5))^m)/m!.
a(n,k) = n!* Sum_{j=1..k} (-1)^(k-j)*binomial(k,j)*binomial(n+5*j-1,5*j-1) /(5^k*k!). - Vladimir Kruchinin, Apr 01 2011
Comments