cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A049374 A triangle of numbers related to triangle A030527.

Original entry on oeis.org

1, 6, 1, 42, 18, 1, 336, 276, 36, 1, 3024, 4200, 960, 60, 1, 30240, 66024, 23400, 2460, 90, 1, 332640, 1086624, 557424, 87360, 5250, 126, 1, 3991680, 18805248, 13349952, 2916144, 255360, 9912, 168, 1, 51891840, 342486144, 325854144, 95001984
Offset: 1

Views

Author

Keywords

Comments

a(n,1) = A001725(n+4). a(n,m)=: S1p(6; n,m), a member of a sequence of lower triangular Jabotinsky matrices with nonnegative entries, including S1p(1; n,m) = A008275 (unsigned Stirling first kind), S1p(2; n,m) = A008297(n,m) (unsigned Lah numbers). S1p(3; n,m) = A046089(n,m), S1p(4; n,m) = A049352, S1p(5; n,m) = A049353(n,m).
Signed lower triangular matrix (-1)^(n-m)*a(n,m) is inverse to matrix A049385(n,m) =: S2(6; n,m). The monic row polynomials E(n,x) := Sum_{m=1..n} (a(n,m)*x^m), E(0,x) := 1 are exponential convolution polynomials (see A039692 for the definition and a Knuth reference).
a(n,m) enumerates unordered increasing n-vertex m-forests composed of m unary trees (out-degree r from {0,1}) whose vertices of depth (distance from the root) j >= 1 come in j+5 colors. The k roots (j=0) each come in one (or no) color. - Wolfdieter Lang, Oct 12 2007

Examples

			Triangle begins
       1;
       6,       1;
      42,      18,      1;
     336,     276,     36,     1;
    3024,    4200,    960,    60,    1;
   30240,   66024,  23400,  2460,   90,   1;
  332640, 1086624, 557424, 87360, 5250, 126, 1;
E.g., row polynomial E(3,x) = 42*x + 18*x^2 + x^3.
a(4,2) = 276 = 4*(6*7) + 3*(6*6) from the two types of unordered 2-forests of unary increasing trees associated with the two m=2 parts partitions (1,3) and (2^2) of n=4. The first type has 4 increasing labelings, each coming in (1)*(1*6*7)=42 colored versions, e.g., ((1c1),(2c1,3c6,4c3)) with lcp for vertex label l and color p. Here the vertex labeled 3 has depth j=1, hence 6 colors, c1..c6, can be chosen and the vertex labeled 4 with j=2 can come in 7 colors, e.g., c1..c7. Therefore there are 4*((1)*(1*6*7))=168 forests of this (1,3) type. Similarly the (2,2) type yields 3*((1*6)*(1*6))=108 such forests, e.g., ((1c1,3c4)(2c1,4c6)) or ((1c1,3c5)(2c1,4c2)), etc. - _Wolfdieter Lang_, Oct 12 2007
		

Crossrefs

Cf. A049402 (row sums), A134140 (alternating row sums).

Programs

  • GAP
    Flat(List([1..10],n->Factorial(n)*List([1..n],k->Sum([1..k],j->(-1)^(k-j)*Binomial(k,j)*Binomial(n+5*j-1,5*j-1)/(5^k*Factorial(k)))))); # Muniru A Asiru, Jun 23 2018
  • Maple
    # The function BellMatrix is defined in A264428.
    # Adds (1,0,0,0, ..) as column 0.
    BellMatrix(n -> (n+5)!/120, 10); # Peter Luschny, Jan 28 2016
  • Mathematica
    a[n_, k_] = n!*Sum[(-1)^(k-j)*Binomial[k, j]*Binomial[n + 5j - 1, 5j - 1]/(5^k*k!), {j, 1, k}] ;
    Flatten[Table[a[n, k], {n, 1, 9}, {k, 1, n}] ][[1 ;; 40]]
    (* Jean-François Alcover, Jun 01 2011, after Vladimir Kruchinin *)
    BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len-1}, {k, 0, len-1}]];
    rows = 10;
    M = BellMatrix[(#+5)!/120&, rows];
    Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 23 2018, after Peter Luschny *)
  • Maxima
    a(n,k)=(n!*sum((-1)^(k-j)*binomial(k,j)*binomial(n+5*j-1,5*j-1),j,1,k))/(5^k*k!); /* Vladimir Kruchinin, Apr 01 2011 */
    
  • PARI
    a(n,k)=(n!*sum(j=1,k,(-1)^(k-j)*binomial(k,j)*binomial(n+5*j-1,5*j-1)))/(5^k*k!);
    for(n=1,12,for(k=1,n,print1(a(n,k),", "));print()); /* print triangle */ /* Joerg Arndt, Apr 01 2011 */
    

Formula

a(n, m) = n!*A030527(n, m)/(m!*5^(n-m)); a(n, m) = (5*m+n-1)*a(n-1, m) + a(n-1, m-1), n >= m >= 1; a(n, m)=0, n < m; a(n, 0) := 0; a(1, 1)=1. E.g.f. for m-th column: ((x*(5 - 10*x + 10*x^2 - 5*x^3 + x^4)/(5*(1-x)^5))^m)/m!.
a(n,k) = n!* Sum_{j=1..k} (-1)^(k-j)*binomial(k,j)*binomial(n+5*j-1,5*j-1) /(5^k*k!). - Vladimir Kruchinin, Apr 01 2011

A046088 Row sums of convolution triangle A030527.

Original entry on oeis.org

1, 16, 206, 2371, 25761, 272376, 2848716, 29701906, 309654696, 3230358586, 33718475076, 352065356916, 3676515354356, 38394136371396, 400952138922036, 4187122750092776, 43725550173817616, 456617901788403056
Offset: 1

Views

Author

Keywords

Formula

G.f. x*(1-10*x+50*x^2-125*x^3+125*x^4)/(1-26*x+260*x^2-1300*x^3+3250*x^4-3250*x^5)= g1(6, x)/(1-g1(6, x)), g1(6, x) := x*(1-10*x+50*x^2-125*x^3+125*x^4)/(1-5*x)^5 (G.f. first column of A030527).

A036083 Expansion of (-1+1/(1-5*x)^5)/(25*x); related to A036071.

Original entry on oeis.org

1, 15, 175, 1750, 15750, 131250, 1031250, 7734375, 55859375, 391015625, 2666015625, 17773437500, 116210937500, 747070312500, 4731445312500, 29571533203125, 182647705078125, 1116180419921875, 6755828857421875
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A036070, A036071. a(n)= A030527(n+1, 1) (first column of triangle).

Programs

  • Mathematica
    LinearRecurrence[{25,-250,1250,-3125,3125},{1,15,175,1750,15750},20] (* Harvey P. Dale, Aug 29 2024 *)
  • Sage
    [lucas_number2(n, 5, 0)*binomial(n,4)/5^6 for n in range(5, 24)] # Zerinvary Lajos, Mar 13 2009

Formula

a(n) = 5^(n-1)*binomial(n+5, 4);
g.f. (-1+(1-5*x)^(-5))/(x*5^2).

A132166 A convolution triangle of numbers obtained from A036224.

Original entry on oeis.org

1, 21, 1, 336, 42, 1, 4536, 1113, 63, 1, 54432, 23184, 2331, 84, 1, 598752, 412272, 65205, 3990, 105, 1, 6158592, 6531840, 1518048, 139860, 6090, 126, 1, 60046272, 94618368, 30912840, 4010769, 256410, 8631, 147, 1, 560431872, 1274921856
Offset: 1

Views

Author

Wolfdieter Lang, Oct 12 2007

Keywords

Comments

Signed version: (-1)^(n-m)*a(n, m) := s1(7; n,m).
a(n,m) := s1p(7; n,m), a member of a sequence of unsigned triangles including s1p(2; n,m)= A007318(n-1,m-1) (Pascal's triangle), A030523=s1p(3), A036068=s1p(4), A030526=s1p(5) and A030527=s1p(6).

Examples

			{1};{21,1};{336,42,1};{4536,1113,63,1};...; Row polynomial s(3,x)=336*x+42*x^2+x^3.
		

Crossrefs

Related triangle A134141 (S1p(7)).
Cf. A036224(n-1), n>=1 (first column). A132167 (row sums). A132168 (alternating row sums).

Formula

a(n, m) = 6*(6*m+n-1)*a(n-1, m)/n + m*a(n-1, m-1)/n, n >= m >= 1; a(n, m) := 0, n
G.f. for m-th column: ((1-(1-6*x)^6)/(36*(1-6*x)^6))^m.
Showing 1-4 of 4 results.