A030797 Decimal expansion of the constant x such that x^x = e. Inverse of W(1), where W is Lambert's function.
1, 7, 6, 3, 2, 2, 2, 8, 3, 4, 3, 5, 1, 8, 9, 6, 7, 1, 0, 2, 2, 5, 2, 0, 1, 7, 7, 6, 9, 5, 1, 7, 0, 7, 0, 8, 0, 4, 3, 6, 0, 1, 7, 9, 8, 6, 6, 6, 7, 4, 7, 3, 6, 3, 4, 5, 7, 0, 4, 5, 6, 9, 0, 5, 5, 4, 7, 2, 7, 5, 8, 4, 7, 1, 8, 6, 9, 9, 5, 7, 3, 6, 7, 8, 9, 0, 8, 3, 8, 9, 1, 0, 5, 0, 6, 8, 1, 1, 0, 5
Offset: 1
Examples
1.763222834351896710225201776951707080436017986667473634570456905547275847...
References
- S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 448-452.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
- Simon Plouffe, 1/W(1), the inverse of the omega number:W(1)
- Simon Plouffe, Plouffe's Inverter, 1/W(1), the inverse of the omega number:W(1)
- Simon Plouffe, Project Gutenberg Etext of Miscellaneous Mathematical Constants #13 in our math series
Programs
-
Mathematica
RealDigits[1/ProductLog[1], 10, 111][[1]] (* Robert G. Wilson v *) RealDigits[x/.FindRoot[x^x==E,{x,1},WorkingPrecision->120]][[1]] (* Harvey P. Dale, Jun 19 2024 *)
-
PARI
solve(x=1,2,x^x-exp(1)) \\ Charles R Greathouse IV, Apr 01 2012
-
PARI
solve(x=1,2,log(x)*x - 1) \\ John W. Nicholson, Apr 10 2015
-
PARI
1/lambertw(1) \\ G. C. Greubel, Mar 02 2018
Formula
Equals 1/A030178.
Equals e^A030178. - Colin Linzer, Nov 20 2024
Extensions
Broken URL to Project Gutenberg replaced by Georg Fischer, Jan 03 2009
Comments