cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A030797 Decimal expansion of the constant x such that x^x = e. Inverse of W(1), where W is Lambert's function.

Original entry on oeis.org

1, 7, 6, 3, 2, 2, 2, 8, 3, 4, 3, 5, 1, 8, 9, 6, 7, 1, 0, 2, 2, 5, 2, 0, 1, 7, 7, 6, 9, 5, 1, 7, 0, 7, 0, 8, 0, 4, 3, 6, 0, 1, 7, 9, 8, 6, 6, 6, 7, 4, 7, 3, 6, 3, 4, 5, 7, 0, 4, 5, 6, 9, 0, 5, 5, 4, 7, 2, 7, 5, 8, 4, 7, 1, 8, 6, 9, 9, 5, 7, 3, 6, 7, 8, 9, 0, 8, 3, 8, 9, 1, 0, 5, 0, 6, 8, 1, 1, 0, 5
Offset: 1

Views

Author

Keywords

Comments

Decimal expansion of the solution to y*log(y) = 1. - Benoit Cloitre, Mar 30 2002
Let u(n+1) = exp(1/u(n)) then for any u(1) which is nonzero and real (positive or negative), lim n -> infinity u(n) = 1.763222834.... - Benoit Cloitre, Aug 06 2002
Conjecture: Another series can be defined as follows. Let z = a + b*i <> 0 be complex, and let z = v^v. Then log(z) + v = v*(1 + log(v)), so f(z, v) = (log(z) + v)/(1 + log(v)) = v. Suppose lim_{n -> infinity} (log(z) + v(n))/(1 + Log(v(n))) = v, for some sequence {v(n)}. Then, since v(n) -> v(n+1), similarly f_(n+1)(z, v) = v(n+1) = (log(z) + v(n))/(1 + log(v(n))). If Im(z) <> 0, recall that log(z) is multi-valued, so one might take both log(z) and log(v(n)) modulo 2*Pi*i. If Im(z) = 0 (i.e., if z is real), then one should use the recurrence f_(n+1)(z, v) = v(n+1) = (log(z) + v(n))/(1 + abs(log(v(n)))). For example, when z = e, we have lim_{n -> infinity} (1 + v(n))/(1 + abs(log(v(n)))) = 1.763222..., for v(0) <> 1/e, with apparent quadratic convergence, and most rapidly when v(0) = 1. Pathologies occur when v(0) is in the vicinity of a fixed point of f(z, v); e.g., if z = 2^(1/4), then such a fixed point is c = 0.806693797003867301..., so f_(n)(z, v) -> c, for all n, with a(0) near c. The constant c was calculated to 250 digits by Joerg Arndt. - L. Edson Jeffery, Apr 12 2011

Examples

			1.763222834351896710225201776951707080436017986667473634570456905547275847...
		

References

  • S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 448-452.

Crossrefs

Programs

Formula

Equals 1/A030178.
Equals e^A030178. - Colin Linzer, Nov 20 2024
Equals sqrt(A299614) = A299617/e. - Hugo Pfoertner, Nov 20 2024

Extensions

Broken URL to Project Gutenberg replaced by Georg Fischer, Jan 03 2009