cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A246929 a(n) = prime(11*n).

Original entry on oeis.org

31, 79, 137, 193, 257, 317, 389, 457, 523, 601, 661, 743, 823, 887, 977, 1049, 1117, 1213, 1289, 1373, 1453, 1531, 1607, 1693, 1777, 1871, 1951, 2029, 2113, 2213, 2293, 2377, 2447, 2551, 2659, 2713, 2797, 2887, 2971, 3079, 3187, 3271, 3359, 3461, 3539
Offset: 1

Views

Author

Vincenzo Librandi, Sep 08 2014

Keywords

Crossrefs

Cf. sequences of the type prime(k*n): A000040 (k=1), A031215 (k=2), A031336 - A031343 (k=3..10), this sequence (k=11), A246930 (k=12), A126588 (k=13), A246931 (k=14), A246932 (k=15), A246933 (k=16), A129480 (k=17), A031921 (k=100), A031922 (k=1000).

Programs

  • Magma
    [NthPrime(11*n): n in [1..50]];
    
  • Mathematica
    Prime[11 Range[50]]
  • PARI
    a(n)=prime(11*n) \\ Edward Jiang, Sep 08 2014
  • Sage
    [nth_prime(11*n) for n in (1..50)] # Bruno Berselli, Sep 08 2014
    

A031917 a(n) = prime(10*n-7).

Original entry on oeis.org

5, 41, 83, 137, 191, 241, 307, 367, 431, 487, 563, 617, 677, 751, 823, 883, 967, 1031, 1093, 1171, 1237, 1303, 1409, 1471, 1543, 1607, 1669, 1753, 1847, 1913, 1999, 2081, 2141, 2239, 2309, 2381, 2447, 2549, 2647, 2699, 2767, 2843, 2927
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [ NthPrime(10*n-7): n in [1..50] ]; // Vincenzo Librandi, Apr 08 2011
    
  • Mathematica
    Prime[10*Range[60]-7] (* G. C. Greubel, Feb 18 2024 *)
  • SageMath
    [nth_prime(10*n-7) for n in range(1,61)] # G. C. Greubel, Feb 18 2024

A244064 Primes which are concatenation of prime(n), prime(10n) and prime(100n).

Original entry on oeis.org

4173310657, 97158322307, 137221330559, 223341346447, 251390752919, 271423157191, 367552173973, 433647386371, 487729796581, 491741197813, 5097643101281, 6018831116447, 6179109119983, 6439439124577, 70910343136379, 71910459137477, 82311933155327, 82912109157739
Offset: 1

Views

Author

K. D. Bajpai, Jun 19 2014

Keywords

Examples

			4173310657 is in the sequence because concatenation of [prime(13), prime(130), prime(1300)] = 4173310657, which is a prime.
97158322307 is in the sequence because concatenation of [prime(25), prime(250), prime(2500)] = 97158322307, which is a prime.
		

Crossrefs

Cf. A031343 (prime(10n)), A031921 (prime(100n)).

Programs

  • Maple
    with(numtheory): with(StringTools): A244064:= proc() local a,b,c,m; a:=ithprime(n); b:=ithprime(10*n); c:=ithprime(100*n);m:=parse(cat(a,b,c)); if isprime(m) then RETURN (m); fi; end: seq(A244064 (), n=1..300);
  • Mathematica
    A244064 = {}; Do[t = FromDigits[Flatten[IntegerDigits /@ {Prime[n], Prime[10 n], Prime[100 n]}]]; If[PrimeQ[t], AppendTo[A244064, t]], {n, 300}]; A244064
Showing 1-3 of 3 results.