A031363 Positive numbers of the form x^2 + xy - y^2; or, of the form 5x^2 - y^2.
1, 4, 5, 9, 11, 16, 19, 20, 25, 29, 31, 36, 41, 44, 45, 49, 55, 59, 61, 64, 71, 76, 79, 80, 81, 89, 95, 99, 100, 101, 109, 116, 121, 124, 125, 131, 139, 144, 145, 149, 151, 155, 164, 169, 171, 176, 179, 180, 181, 191, 196, 199, 205, 209, 211, 220, 225, 229, 236
Offset: 1
References
- M. Baake, "Solution of coincidence problem ...", in R. V. Moody, ed., Math. of Long-Range Aperiodic Order, Kluwer 1997, pp. 9-44.
Links
- Robert Israel and Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- M. Baake, Solution of the coincidence problem in dimensions d <= 4, arxiv:math/0605222 [math.MG], 2006.
- M. Baake and R. V. Moody, Similarity submodules and semigroups in Quasicrystals and Discrete Geometry, ed. J. Patera, Fields Institute Monographs, vol. 10 AMS, Providence, RI (1998) pp. 1-13.
- J. H. Conway, E. M. Rains and N. J. A. Sloane, On the existence of similar sublattices, Canad. J. Math. 51 (1999), 1300-1306 (Abstract, pdf, ps).
- Norbert Hungerbühler and Maciej Smela, Geometric approach to the Diophantine equation x^2 + x*y - y^2 = m, hal-04835410, 2024. See p. 18.
- N. J. A. Sloane, My favorite integer sequences, in Sequences and their Applications (Proceedings of SETA '98).
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
Crossrefs
Numbers representable as x^2 + k*x*y + y^2 with 0 <= x <= y, for k=0..9: A001481(k=0), A003136(k=1), A000290(k=2), this sequence, A084916(k=4), A243172(k=5), A242663(k=6), A243174(k=7), A243188(k=8), A316621(k=9).
See A035187 for number of representations.
For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.
See also the related sequence A263849 based on a theorem of Maass.
Programs
-
Maple
select(t -> nops([isolve(5*x^2-y^2=t)])>0, [$1..1000]); # Robert Israel, Jun 12 2014
-
Mathematica
ok[n_] := Resolve[Exists[{x, y}, Element[x|y, Integers], n == 5*x^2-y^2]]; Select[Range[236], ok] (* or, for a large number of terms: *) max = 60755 (* max=60755 yields 10000 terms *); A031363 = {}; xm = 1; While[T = A031363; A031363 = Table[5*x^2 - y^2, {x, 1, xm}, {y, 0, Floor[ x*Sqrt[5]]}] // Flatten // Union // Select[#, # <= max&]&; A031363 != T, xm = 2*xm]; A031363 (* Jean-François Alcover, Mar 21 2011, updated Mar 17 2018 *)
-
PARI
select(x -> x, direuler(p=2,101,1/(1-(kronecker(5,p)*(X-X^2))-X)), 1) \\ Fixed by Andrey Zabolotskiy, Jul 30 2020, after hints by Colin Barker, Jun 18 2014, and Michel Marcus
-
PARI
is(n)=#bnfisintnorm(bnfinit(z^2-z-1),n) \\ Ralf Stephan, Oct 18 2013
-
PARI
seq(M,k=3) = { \\ assume k >= 0 setintersect([1..M], setbinop((x,y)->x^2 + k*x*y + y^2, [0..1+sqrtint(M)])); }; seq(236) \\ Gheorghe Coserea, Jul 29 2018
-
Python
from itertools import count, islice from sympy import factorint def A031363_gen(): # generator of terms return filter(lambda n:all(not((1 < p % 5 < 4) and e & 1) for p, e in factorint(n).items()),count(1)) A031363_list = list(islice(A031363_gen(),30)) # Chai Wah Wu, Jun 28 2022
Formula
Consists exactly of numbers in which primes == 2 or 3 mod 5 occur with even exponents.
Indices of the nonzero terms in expansion of Dirichlet series Product_p (1-(Kronecker(m, p)+1)*p^(-s)+Kronecker(m, p)*p^(-2s))^(-1) for m = 5.
Extensions
More terms from Erich Friedman
b-file corrected and extended by Robert Israel, Jun 12 2014
Comments