cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A031876 a(n) = Sum_{k=0..n} floor(k^(1/3)).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 75, 78, 81, 84, 87, 90, 93, 96, 99, 102, 105, 108, 111, 114, 117, 120, 123, 126, 129, 132, 135, 138, 141, 144, 147, 150, 153, 156, 160
Offset: 0

Views

Author

Michel Tixier (tixier(AT)dyadel.net)

Keywords

References

  • K. H. Rosen, Discrete Mathematics and Its Application, 6th Edition, McGraw-Hill, 2007, Ex. 26 of section 2.4.

Crossrefs

Cf. A022554.

Programs

  • Mathematica
    Accumulate[Floor[Surd[Range[0,70],3]]] (* Harvey P. Dale, Nov 03 2013 *)
    Table[Sum[Floor[i^(1/3)], {i,0,n}], {n,0,50}] (* G. C. Greubel, Dec 22 2016 *)
  • PARI
    a(n) = sum(k=1, n, sqrtnint(k, 3)); \\ Michel Marcus, Mar 12 2016
    
  • PARI
    a(n)=my(t=sqrtnint(n,3)); t*(4*n-t^3-2*t^2-t+4)/4 \\ Charles R Greathouse IV, Aug 23 2017

Formula

a(0) = 0, a(1) = 1, a(n) = 2*a(n-1) - a(n-2) if n not a perfect cube, else a(n) = 2*a(n-1) - a(n-2) + 1 if n is a perfect cube.
a(n) = -1/4*floor(n^(1/3))*(floor(n^(1/3))^3+2*floor(n^(1/3))^2+floor(n^(1/3))-4*(n+1)). - John M. Campbell, Mar 22 2016
G.f.: Sum_{k>=1} x^(k^3)/(1 - x)^2. - Ilya Gutkovskiy, Dec 22 2016
a(n) = (3/4)*n^(4/3) + O(n). - Charles R Greathouse IV, Aug 23 2017