cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A032512 Sum of the integer part of 4th roots of integers <= n.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119
Offset: 0

Views

Author

Michel Tixier (tixier(AT)dyadel.net)

Keywords

Crossrefs

Partial sums of A255270.

Programs

  • Mathematica
    Accumulate[Floor[Surd[Range[0,70],4]]] (* Harvey P. Dale, Dec 14 2024 *)
  • PARI
    a(n) = sum(k=1, n, sqrtnint(k, 4)); \\ Michel Marcus, Mar 12 2016

Formula

G.f.: Sum_{k>=1} x^(k^4)/(1 - x)^2. - Ilya Gutkovskiy, Dec 22 2016
a(n) = -(1/30) * floor(n^(1/4)) * (-31 - 30 * n + 10 * floor(n^(1/4))^2 + 15 * floor(n^(1/4))^3 + 6 * floor(n^(1/4))^4). - Pooya Farshim, Sep 28 2024

Extensions

NAME adapted to offset. - Giovanni Resta, May 08 2020

A032513 Sum of the integer part of 5th roots of positive integers less than or equal to n.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107
Offset: 0

Views

Author

Michel Tixier (tixier(AT)dyadel.net)

Keywords

Crossrefs

Partial sums of A178487.

Programs

  • Mathematica
    Accumulate[Floor[Surd[Range[0,70],5]]] (* Harvey P. Dale, Jan 21 2019 *)
  • PARI
    a(n) = sum(k=1, n, sqrtnint(k, 5)); \\ Michel Marcus, Mar 12 2016

Formula

G.f.: Sum_{k>=1} x^(k^5)/(1 - x)^2. - Ilya Gutkovskiy, Dec 22 2016
a(n) = -(1/12) * floor(n^(1/5)) * (-12 - 12*n - floor(n^(1/5)) + 5*floor(n^(1/5))^3 + 6*floor(n^(1/5))^4 + 2*floor(n^(1/5))^5). - Pooya Farshim, Sep 28 2024

A268173 a(n) = Sum_{k=0..n} (-1)^k*floor(sqrt(k)).

Original entry on oeis.org

0, -1, 0, -1, 1, -1, 1, -1, 1, -2, 1, -2, 1, -2, 1, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -3, 2, -3, 2, -3, 2, -3, 2, -3, 2, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -4, 3, -4, 3, -4, 3, -4, 3, -4, 3, -4, 3, -4, 3, -4, 4, -4, 4, -4, 4, -4, 4, -4, 4, -4, 4, -4, 4, -4, 4, -4, 4
Offset: 0

Views

Author

John M. Campbell, Jan 28 2016

Keywords

Examples

			a(5) = -1 = floor(sqrt(0)) - floor(sqrt(1)) + floor(sqrt(2)) - floor(sqrt(3)) + floor(sqrt(4)) - floor(sqrt(5)).
		

Crossrefs

Programs

  • Maple
    seq(add((-1)^k*floor(sqrt(k)), k=0..n), n=0..80); # Ridouane Oudra, Jan 21 2024
  • Mathematica
    Table[Sum[(-1)^k Floor[Sqrt@ k], {k, 0, n}], {n, 0, 50}] (* Michael De Vlieger, Mar 15 2016 *)
  • PARI
    a(n) = sum(k=0, n, (-1)^k*sqrtint(k)); \\ Michel Marcus, Jan 28 2016
    
  • PARI
    a(n) = sqrtint(n)*(-1)^n/2-((-1)^(sqrtint(n)+1)+1)/4; \\ John M. Campbell, Mar 15 2016

Formula

a(n) = floor(sqrt(n))*(-1)^n/2 - ((-1)^(floor(sqrt(n))+1)+1)/4.
a(n) = (-1)^n * Sum_{i=1..ceiling(n/2)} c(n+2-2*i), where c is the square characteristic (A010052). - Wesley Ivan Hurt, Nov 26 2020
From Ridouane Oudra, Jan 21 2024: (Start)
a(n) = (-1)^n*floor((sqrt(n) + (n mod 2))/2);
a(2*n) = floor(sqrt(n/2));
a(2*n+1) = -floor(sqrt((n+1)/2) + 1/2). (End)

Extensions

Terms a(55) and beyond from Andrew Howroyd, Mar 02 2020

A270370 a(n) = Sum_{k=0..n} (-1)^k*floor(k^(1/3)).

Original entry on oeis.org

0, -1, 0, -1, 0, -1, 0, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 2, -2, 2, -2, 2, -2
Offset: 0

Views

Author

John M. Campbell, Mar 15 2016

Keywords

Examples

			a(5) = [0^(1/3)]-[1^(1/3)]+[2^(1/3)]-[3^(1/3)]+[4^(1/3)]-[5^(1/3)] = 0-1+1-1+1-1 = -1, letting [] denote the floor function.
		

Crossrefs

Programs

  • Mathematica
    Print[Table[Sum[(-1)^i*Floor[i^(1/3)],{i,0,n}],{n,0,100}]]
  • PARI
    a(n)=sum(i=0,n,(-1)^i*sqrtnint(i,3))
    
  • PARI
    a(n)=sqrtnint(n,3)*(-1)^n/2-((-1)^(sqrtnint(n,3)+1)+1)/4

Formula

a(n) = floor(n^(1/3))*(-1)^n/2 - ((-1)^(floor(n^(1/3))+1)+1)/4.

A292621 a(n) = a(n-1) + a(floor(log(n))) with a(1) = 1, a(2) = 2.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 75, 78, 81, 84, 87, 90, 93, 96, 99, 102, 105, 108, 111, 114, 117, 120, 123, 126, 129, 132, 135, 139, 143, 147, 151, 155, 159, 163, 167
Offset: 1

Views

Author

Yi Yang, Sep 20 2017

Keywords

Comments

a(n) > c*n*log(n)*log(log(n))*log(log(log(n)))*...*log(log...(log(n))...) (k layers) for any sufficient large n, any constant c and any positive integer k.
The sum of 1/a(i) for i = 1, 2, 3, ... diverges extremely slowly.

Crossrefs

Programs

  • Maple
    f:= proc(n) option remember;
    procname(n-1)+procname(floor(log(n)))
    end proc:
    f(1):= 1: f(2):= 2:
    map(f, [$1..100]); # Robert Israel, Sep 28 2017
  • Mathematica
    a[n_] := a[n] = If[n <= 2, n, a[n - 1] + a[Floor@ Log@ n]]; Array[a, 62] (* Michael De Vlieger, Sep 21 2017 *)
  • PARI
    a(n) = if (n<=2, n, a(n-1) + a(floor(log(n)))); \\ Michel Marcus, Sep 21 2017

A262352 a(n) = Sum_{k=0..n} (-1)^k*floor(k^(1/4)).

Original entry on oeis.org

0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 1
Offset: 0

Views

Author

John M. Campbell, Mar 24 2016

Keywords

Examples

			Letting [] denote the floor function, a(7) = [0^(1/4)] - [1^(1/4)] + [2^(1/4)] - [3^(1/4)] + [4^(1/4)] - [5^(1/4)] + [6^(1/4)] - [7^(1/4)] = 0 - 1 + 1 - 1 + 1 - 1 + 1 - 1 = -1.
		

Crossrefs

Programs

  • Mathematica
    Print[Table[Sum[(-1)^k*Floor[k^(1/4)],{k,0,n}],{n,0,100}]] ;
  • PARI
    a(n)=floor(n^(1/4))*(-1)^n/2-((-1)^(floor(n^(1/4))+1)+1)/4
    
  • PARI
    a(n)=sum(k=0,n,(-1)^k*floor(k^(1/4)))
    
  • PARI
    A262352(n) = sum(k=0,n,((-1)^k)*sqrtnint(k, 4)); \\ Antti Karttunen, Nov 06 2018

Formula

a(n) = floor(n^(1/4))*(-1)^n/2-((-1)^(floor(n^(1/4))+1)+1)/4.

Extensions

More terms from Antti Karttunen, Nov 06 2018

A352077 a(n) = floor( Sum_{k=1..n} k^(1/3) ).

Original entry on oeis.org

0, 1, 2, 3, 5, 6, 8, 10, 12, 14, 16, 19, 21, 23, 26, 28, 31, 33, 36, 39, 41, 44, 47, 50, 53, 56, 58, 61, 65, 68, 71, 74, 77, 80, 83, 87, 90, 93, 97, 100, 104, 107, 110, 114, 117, 121, 125, 128, 132, 136, 139, 143, 147, 150, 154, 158, 162, 166, 170, 173, 177, 181, 185, 189, 193, 197
Offset: 0

Views

Author

Robert G. Wilson v, Mar 02 2022

Keywords

Examples

			a(6) = 8 because 1^(1/3) + 2^(1/3) + 3^(1/3) + 4^(1/3) + 5^(1/3) + 6^(1/3) = 8.81667... .
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Floor[ HarmonicNumber[n, -1/3]]; Array[ a, 66, 0]
  • PARI
    a(n) = floor(sum(k=0, n, k^(1/3))); \\ Michel Marcus, Mar 02 2022

A270103 Array read by antidiagonals: T(n, k) is the sum of the integer part of the n-th roots of natural numbers less than k.

Original entry on oeis.org

1, 3, 1, 6, 2, 1, 10, 3, 2, 1, 15, 5, 3, 2, 1, 21, 7, 4, 3, 2, 1, 28, 9, 5, 4, 3, 2, 1, 36, 11, 6, 5, 4, 3, 2, 1, 45, 13, 7, 6, 5, 4, 3, 2, 1, 55, 16, 9, 7, 6, 5, 4, 3, 2, 1, 66, 19, 11, 8, 7, 6, 5, 4, 3, 2, 1
Offset: 1

Views

Author

John M. Campbell, Mar 11 2016

Keywords

Examples

			The fifth entry in the second row of this array is 7, since 7 = floor(sqrt(1)) + floor(sqrt(2)) + floor(sqrt(3)) + floor(sqrt(4)) + floor(sqrt(5)).
The table array begins:
  1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...
  1, 2, 3,  5,  7,  9, 11, 13, 16, 19, ...
  1, 2, 3,  4,  5,  6,  7,  9, 11, 13, ...
  1, 2, 3,  4,  5,  6,  7,  8,  9, 10, ...
  ...
		

References

  • R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics, 2nd Edition, Addison-Wesley, 1994, Eq. 3.27 on page 87.
  • D. E. Knuth, The Art of Computer Programming, Vol. 1, 3rd Edition, Addison-Wesley, 1997, Ex. 43 of section 1.2.4.

Crossrefs

Main diagonal and each diagonal below the main diagonal: A000027.

Programs

  • Mathematica
    T[n_, k_] := (1 + k) Floor[k^(1/n)] - HarmonicNumber[Floor[k^(1/n)], -n] (* Daniel Hoying, Jun 11 2020 *)
  • PARI
    T(n, k) = sum(j=0, k, sqrtnint(j, n)); \\ Michel Marcus, Mar 12 2016

Formula

T(n,k) = Sum_{j=0..k} floor(j^(1/n)).
T(n,k) = (1+k)*floor(k^(1/n)) - (1/(n+1))*Sum_{j=1..n+1} (1 + floor(k^(1/n)))^j*binomial(n+1, j)*Bernoulli(n+1-j).
T(n,k) = (1+k)*floor(k^(1/n)) - Sum_{j=1..floor(k^(1/n))} j^n. - Daniel Hoying, Jun 11 2020

A270825 a(n) = Sum_{i=0..n} (-1)^floor(i/2)*floor(sqrt(i)).

Original entry on oeis.org

0, 1, 0, -1, 1, 3, 1, -1, 1, 4, 1, -2, 1, 4, 1, -2, 2, 6, 2, -2, 2, 6, 2, -2, 2, 7, 2, -3, 2, 7, 2, -3, 2, 7, 2, -3, 3, 9, 3, -3, 3, 9, 3, -3, 3, 9, 3, -3, 3, 10, 3, -4, 3, 10, 3, -4, 3, 10, 3, -4, 3, 10, 3, -4, 4, 12, 4, -4, 4, 12, 4, -4, 4, 12, 4, -4, 4
Offset: 0

Views

Author

John M. Campbell, Mar 23 2016

Keywords

Examples

			Letting [] denote the floor function, a(7) = [sqrt(0)]+[sqrt(1)]-[sqrt(2)]-[sqrt(3)]+[sqrt(4)]+[sqrt(5)]-[sqrt(6)]-[sqrt(7)] = 0+1-1-1+2+2-2-2 = -1.
		

Crossrefs

Programs

  • Mathematica
    Print[Table[Sum[(-1)^(Floor[i/2])*Floor[Sqrt[i]],{i,0,n}],{n,0,100}]]
  • PARI
    a(n)=sum(i=0,n,(-1)^(floor(i/2))*floor(sqrt(i)))

Formula

a(4m)=floor(sqrt(m)), a(4m+1)=floor(3/2*floor(sqrt(4m+1))), a(4m+2)=floor(sqrt(m)), a(4m+3)=-floor((1+sqrt(4m+3))/2).
Showing 1-9 of 9 results.