cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A031928 Lower prime of a difference of 10 between consecutive primes.

Original entry on oeis.org

139, 181, 241, 283, 337, 409, 421, 547, 577, 631, 691, 709, 787, 811, 829, 919, 1021, 1039, 1051, 1153, 1171, 1249, 1399, 1471, 1627, 1699, 1723, 1801, 1879, 2017, 2029, 2053, 2089, 2143, 2521, 2647, 2719, 2731, 2767, 2887, 2917, 3001, 3109, 3361, 3517, 3547, 3571, 3583, 3709, 3769, 3823, 3853, 4201, 4219, 4231, 4243, 4261, 4273, 4327, 4339, 4363, 4483, 4663, 4861, 4909, 4957, 5011, 5179, 5323, 5581, 5659, 5701, 5791, 5869, 6079, 6091
Offset: 1

Views

Author

Lekraj Beedassy, Jul 23 2003

Keywords

Comments

Conjecture: The sequence is infinite and for every n, a(n+1) < a(n)^(1+1/n). Namely, a(n)^(1/n) is a strictly decreasing function of n (see comments at A248855). - Jahangeer Kholdi and Farideh Firoozbakht, Nov 29 2014

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(7000) | NextPrime(p)-p eq 10]; // Bruno Berselli, Apr 09 2013
    
  • Mathematica
    Transpose[Select[Partition[Prime[Range[800]], 2, 1], #[[2]] - #[[1]] == 10&]] [[1]] (* Harvey P. Dale, Oct 02 2014 *)
    p = Prime@Range@800; p[[Flatten@Position[Differences@p, 10]]] (* Hans Rudolf Widmer, Aug 28 2022 *)
  • PARI
    forprime(p=o=1,1e4,10+o==(o=p)&&print1(p-10",")) \\ M. F. Hasler, Mar 10 2017

Formula

a(n) = prime(A320703(n)). - R. J. Mathar, Apr 30 2024

Extensions

Edited by Labos Elemer, Jul 25 2003