cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A007931 Numbers that contain only 1's and 2's. Nonempty binary strings of length n in lexicographic order.

Original entry on oeis.org

1, 2, 11, 12, 21, 22, 111, 112, 121, 122, 211, 212, 221, 222, 1111, 1112, 1121, 1122, 1211, 1212, 1221, 1222, 2111, 2112, 2121, 2122, 2211, 2212, 2221, 2222, 11111, 11112, 11121, 11122, 11211, 11212, 11221, 11222, 12111, 12112, 12121, 12122
Offset: 1

Views

Author

R. Muller

Keywords

Comments

Numbers written in the dyadic system [Smullyan, Stillwell]. - N. J. A. Sloane, Feb 13 2019
Logic-binary sequence: prefix it by the empty word to have all binary words on the alphabet {1,2}.
The least binary word of length k is a(2^k - 1).
See Mathematica program for logic-binary sequence using (0,1) in place of (1,2); the sequence starts with 0,1,00,01,10. - Clark Kimberling, Feb 09 2012
A007953(a(n)) = A014701(n+1); A007954(a(n)) = A048896(n). - Reinhard Zumkeller, Oct 26 2012
a(n) is n written in base 2 where zeros are not allowed but twos are. The two distinct digits used are 1, 2 instead of 0, 1. To obtain this sequence from the "canonical" base 2 sequence with zeros allowed, just replace any 0 with a 2 and then subtract one from the group of digits situated on the left: (10-->2; 100-->12; 110-->22; 1000-->112; 1010-->122). - Robin Garcia, Jan 31 2014
For numbers made of only two different digits, see also A007088 (digits 0 & 1), A032810 (digits 2 & 3), A032834 (digits 3 & 4), A256290 (digits 4 & 5), A256291 (digits 5 & 6), A256292 (digits 6 & 7), A256340(digits 7 & 8), A256341 (digits 8 & 9), and A032804-A032816 (in other bases). Numbers with exactly two distinct (but unspecified) digits in base 10 are listed in A031955, for other bases in A031948-A031954. - M. F. Hasler, Apr 04 2015
The variant with digits {0, 1} instead of {1, 2} is obtained by deleting all initial digits in sequence A007088 (numbers written in base 2). - M. F. Hasler, Nov 03 2020

Examples

			Positive numbers may not start with 0 in the OEIS, otherwise this sequence would have been written as: 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111, 00000, 00001, 00010, 00011, 00100, 00101, 00110, 00111, 01000, 01001, 01010, 01011, ...
From _Hieronymus Fischer_, Jun 06 2012: (Start)
a(10)   = 122.
a(100)  = 211212.
a(10^3) = 222212112.
a(10^4) = 1122211121112.
a(10^5) = 2111122121211112.
a(10^6) = 2221211112112111112.
a(10^7) = 11221112112122121111112.
a(10^8) = 12222212122221111211111112.
a(10^9) = 22122211221212211212111111112. (End)
		

References

  • J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, p. 2. - From N. J. A. Sloane, Jul 26 2012
  • K. Atanassov, On the 97th, 98th and the 99th Smarandache Problems, Notes on Number Theory and Discrete Mathematics, Sophia, Bulgaria, Vol. 5 (1999), No. 3, 89-93.
  • R. M. Smullyan, Theory of Formal Systems, Princeton, 1961.
  • John Stillwell, Reverse Mathematics, Princeton, 2018. See p. 90.

Crossrefs

Cf. A007932 (digits 1-3), A059893, A045670, A052382 (digits 1-9), A059939, A059941, A059943, A032924, A084544, A084545, A046034 (prime digits 2,3,5,7), A089581, A084984 (no prime digits); A001742, A001743, A001744: loops; A202267 (digits 0, 1 and primes), A202268 (digits 1,4,6,8,9), A014261 (odd digits), A014263 (even digits).
Cf. A007088 (digits 0 & 1), A032810 (digits 2 & 3), A032834 (digits 3 & 4), A256290 (digits 4 & 5), A256291 (digits 5 & 6), A256292 (digits 6 & 7), A256340 (digits 7 & 8), A256341 (digits 8 & 9), and A032804-A032816 (in other bases).
Cf. A020450 (primes).

Programs

  • Haskell
    a007931 n = f (n + 1) where
       f x = if x < 2 then 0 else (10 * f x') + m + 1
         where (x', m) = divMod x 2
    -- Reinhard Zumkeller, Oct 26 2012
    
  • Magma
    [n: n in [1..100000] | Set(Intseq(n)) subset {1,2}]; // Vincenzo Librandi, Aug 19 2016
    
  • Maple
    # Maple program to produce the sequence:
    a:= proc(n) local m, r, d; m, r:= n, 0;
          while m>0 do d:= irem(m, 2, 'm');
            if d=0 then d:=2; m:= m-1 fi;
            r:= d, r
          od; parse(cat(r))/10
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Aug 26 2016
    # Maple program to invert this sequence: given a(n), it returns n. - N. J. A. Sloane, Jul 09 2012
    invert7931:=proc(u)
    local t1,t2,i;
    t1:=convert(u,base,10);
    [seq(t1[i]-1,i=1..nops(t1))];
    [op(%),1];
    t2:=convert(%,base,2,10);
    add(t2[i]*10^(i-1),i=1..nops(t2))-1;
    end;
  • Mathematica
    f[n_] := FromDigits[Rest@IntegerDigits[n + 1, 2] + 1]; Array[f, 42] (* Robert G. Wilson v Sep 14 2006 *)
    (* Next, A007931 using (0,1) instead of (1,2) *)
    d[n_] := FromDigits[Rest@IntegerDigits[n + 1, 2] + 1]; Array[FromCharacterCode[ToCharacterCode[ToString[d[#]]] - 1] &, 100] (* Peter J. C. Moses, at request of Clark Kimberling, Feb 09 2012 *)
    Flatten[Table[FromDigits/@Tuples[{1,2},n],{n,5}]] (* Harvey P. Dale, Sep 13 2014 *)
  • PARI
    apply( {A007931(n)=fromdigits([d+1|d<-binary(n+1)[^1]])}, [1..44]) \\ M. F. Hasler, Nov 03 2020, replacing older code from Mar 26 2015
    
  • PARI
    /* inverse function */ apply( {A007931_inv(N)=fromdigits([d-1|d<-digits(N)],2)+2<M. F. Hasler, Nov 09 2020
    
  • Python
    def a(n): return int(bin(n+1)[3:].replace('1', '2').replace('0', '1'))
    print([a(n) for n in range(1, 45)]) # Michael S. Branicky, May 13 2021
    
  • Python
    def A007931(n): return int(s:=bin(n+1)[3:])+(10**(len(s))-1)//9 # Chai Wah Wu, Jun 13 2025

Formula

To get a(n), write n+1 in base 2, remove initial 1, add 1 to all remaining digits: e.g., eleven (11) in base 2 is 1011; remove initial 1 and add 1 to remaining digits: a(10)=122. - Clark Kimberling, Mar 11 2003
Conversely, given a(n), to get n: subtract 1 from all digits, prefix with an initial 1, convert this binary number to base 10, subtract 1. E.g., a(6)=22 -> 11 -> 111 -> 7 -> 6. - N. J. A. Sloane, Jul 09 2012
a(n) = A053645(n+1)+A002275(A000523(n)) = a(n-2^b(n))+10^b(n) where b(n) = A059939(n) = floor(log_2(n+1)-1). - Henry Bottomley, Feb 14 2001
From Hieronymus Fischer, Jun 06 2012 and Jun 08 2012: (Start)
The formulas are designed to calculate base-10 numbers only using the digits 1 and 2.
a(n) = Sum_{j=0..m-1} (1 + b(j) mod 2)*10^j, where m = floor(log_2(n+1)), b(j) = floor((n+1-2^m)/(2^j)).
Special values:
a(k*(2^n-1)) = k*(10^n-1)/9, k= 1,2.
a(3*2^n-2) = (11*10^n-2)/9 = 10^n+2*(10^n-1)/9.
a(2^n-2) = 2*(10^(n-1)-1)/9, n>1.
Inequalities:
a(n) <= (10^log_2(n+1)-1)/9, equality holds for n=2^k-1, k>0.
a(n) > (2/10)*(10^log_2(n+1)-1)/9.
Lower and upper limits:
lim inf a(n)/10^log_2(n) = 1/45, for n --> infinity.
lim sup a(n)/10^log_2(n) = 1/9, for n --> infinity.
G.f.: g(x) = (1/(x(1-x)))*sum_{j=0..infinity} 10^j* x^(2*2^j)*(1 + 2 x^2^j)/(1 + x^2^j).
Also: g(x) = (1/(1-x))*(h_(2,0)(x) + h_(2,1)(x) - 2*h_(2,2)(x)), where h_(2,k)(x) = sum_{j>=0} 10^j*x^(2^(j+1)-1)*x^(k*2^j)/(1-x^2^(j+1)).
Also: g(x) = (1/(1-x)) sum_{j>=0} (1 - 3(x^2^j)^2 + 2(x^2^j)^3)*x^2^j*f_j(x)/(1-x^2^j), where f_j(x) = 10^j*x^(2^j-1)/(1-(x^2^j)^2). The f_j obey the recurrence f_0(x) = 1/(1-x^2), f_(j+1)(x) = 10x*f_j(x^2). (End)

Extensions

Some crossrefs added by Hieronymus Fischer, Jun 06 2012
Edited by M. F. Hasler, Mar 26 2015

A031955 Numbers with exactly two distinct base-10 digits.

Original entry on oeis.org

10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 110, 112, 113, 114, 115, 116, 117, 118, 119, 121, 122, 131, 133, 141, 144, 151, 155, 161, 166
Offset: 1

Views

Author

Keywords

Comments

The three-digit terms are given by A210666(1,...,244). For numbers with exactly two distinct (but unspecified) digits in other bases, see A031948-A031954. For numbers made of two *given* digits, see A007088 (digits 0 & 1), A007931 (digits 1 & 2), A032810 (digits 2 & 3), A032834 (digits 3 & 4), A256290 (digits 4 & 5), A256291 (digits 5 & 6), A256292 (digits 6 & 7), A256340 (digits 7 & 8), A256341 (digits 8 & 9), and A032804-A032816 (in other bases). - M. F. Hasler, Apr 04 2015
A235154 is a subsequence. - Altug Alkan, Dec 03 2015
A235717 is a subsequence. - Robert Israel, Dec 03 2015

Crossrefs

Programs

  • Haskell
    a031955 n = a031955_list !! (n-1)
    a031955_list = filter ((== 2) . a043537) [0..]
    -- Reinhard Zumkeller, Feb 05 2012
    
  • Maple
    M:= 5: # to get all terms < 10^M
    sort([seq(seq(seq(seq(add(10^(m-j)*`if`(member(j,S2),d2,d1),j=1..m)  ,
      S2 = combinat:-powerset({$2..m}) minus {{}}),
      d2 = {$0..9} minus {d1}), d1 = 1..9), m=2..M)]); # Robert Israel, Dec 03 2015
  • Mathematica
    Select[Range@ 166, Length@ Union@ IntegerDigits@ # == 2 &] (* Michael De Vlieger, Dec 03 2015 *)
  • PARI
    is_A031955(n)=#Set(digits(n))==2 \\ M. F. Hasler, Apr 04 2015
    
  • Python
    def ok(n): return len(set(str(n))) == 2
    print(list(filter(ok, range(167)))) # Michael S. Branicky, Oct 12 2021

Formula

A043537(a(n)) = 2. - Reinhard Zumkeller, Dec 03 2009

Extensions

Name edited by Charles R Greathouse IV, Feb 13 2017

A167819 Numbers with a distinct frequency for each ternary digit.

Original entry on oeis.org

9, 10, 12, 14, 16, 17, 18, 20, 22, 23, 24, 25, 27, 31, 37, 39, 41, 43, 49, 53, 54, 62, 67, 71, 74, 77, 78, 79, 81, 82, 84, 85, 90, 91, 93, 94, 108, 109, 111, 112, 117, 118, 120, 122, 124, 125, 130, 131, 133, 134, 148, 149, 151, 152, 157, 158, 160, 161, 162, 164, 168
Offset: 1

Views

Author

Keywords

Comments

The smallest number in the sequence that actually contains all 3 ternary digits is 248 = 100012_3. [Corrected by M. F. Hasler, Nov 02 2012]
The number 28 is in A031948 but not in this sequence A167819. This sequence is infinite, e.g. all powers 3^k, k>1 are member. Digit frequencies are [2,1,0] for the first 12 terms (with 3 digits in base 3, from 100[3] to 221[3]), then [3,1,0] for the next 16 terms with 4 digits in base 3 (from 1000[3] to 2221[3]), then [4,1,0] and [3,2,0] (5 digits in base 3, from 10000[3] to 22221[3]), followed by [5,1,0] or [4,2,0] or [3,2,1] (6 digits in base-3, from 10000[3] to 22221[3]), etc. - M. F. Hasler, Nov 02 2012

Examples

			9 = 100_3 is in the sequence, as it has 2 0's, 1 1, and 0 2's.
1 is not in the sequence, as it has the same number (0) of 0's and 2's.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[168],Length[Union[DigitCount[ #,3]]]==3&] (* Zak Seidov, Nov 13 2009 *)
  • PARI
    /* In PARI versions < 2.6, define: digits(n,b=10)=local(r);r=[];while(n>0,r=concat([n%b],r);n\=b);r */
    is_A167819(n)=local(d=digits(n,3),v=vector(3));for(k=1,#d,v[d[k]+1]++);#Set(v)==3
    for(n=1,250,if(is_A167819(n),print1(n",")))

A031951 Numbers with exactly two distinct base-6 digits.

Original entry on oeis.org

6, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 34, 36, 37, 42, 44, 45, 46, 47, 49, 50, 55, 57, 61, 64, 67, 71, 72, 74, 79, 80, 84, 85, 87, 88, 89, 92, 93, 98, 100, 104, 107, 108, 111, 115, 117
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    M:= 6: # get all terms < 6^M
    sort([seq(seq(seq(seq(add(6^(m-j)*`if`(member(j,S2),d2,d1),j=1..m)  ,
    S2 = combinat:-powerset({$2..m}) minus {{}}),
    d2 = {$0..5} minus {d1}), d1 = 1..5), m=2..M)]);# Robert Israel, Dec 03 2015
  • Mathematica
    fQ[n_] := Length@ Union@ IntegerDigits[n, 6] == 2; Select[Range@117, fQ] (* Robert G. Wilson v, Dec 03 2015 *)

A031953 Numbers with exactly two distinct base-8 digits.

Original entry on oeis.org

8, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 64, 65, 72, 74, 75, 76, 77, 78, 79, 81, 82, 89, 91, 97, 100, 105
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[100],Length[Union[IntegerDigits[#,8]]]==2&] (* Harvey P. Dale, Feb 15 2019 *)
  • PARI
    is(n)=#Set(digits(n, 8))==2 \\ Charles R Greathouse IV, Feb 15 2017
    
  • Python
    def ok(n): return len(set(oct(n)[2:])) == 2
    print(list(filter(ok, range(106)))) # Michael S. Branicky, Aug 10 2021

Extensions

Name edited by Michael S. Branicky, Aug 10 2021

A218559 Sum_{i=0..n-1} i*(n^(i+1)-1)/(n-1)*n^(i(i+1)/2).

Original entry on oeis.org

0, 6, 714, 1047188, 30515132780, 21936856591278330, 459986443452971306412268, 324518550895166392891543292552264, 8727963565271662417355532872177263437534624, 9999999999888888888777777776666666555555444443333222110
Offset: 1

Views

Author

M. F. Hasler, Nov 02 2012

Keywords

Comments

Largest number which can be written in base n using d+1 times the digit d, d=0,...,n-1. (Or: such that for each k=1,...,n, some digit is used exactly k times.)

Examples

			Written in the respective bases, a(2) = 6 = 110[2], a(3) = 714 = 222110[3], a(4) = 1047188 = 33322110[4], etc.
		

Crossrefs

Programs

  • PARI
    a(b)=sum(i=1,b-1,(b^(i+1)-1)\(b-1)*b^(i*(i+1)\2)*i)
Showing 1-6 of 6 results.