A032091 Number of reversible strings with n-1 beads of 2 colors. 4 beads are black. String is not palindromic.
2, 6, 16, 32, 60, 100, 160, 240, 350, 490, 672, 896, 1176, 1512, 1920, 2400, 2970, 3630, 4400, 5280, 6292, 7436, 8736, 10192, 11830, 13650, 15680, 17920, 20400, 23120, 26112, 29376, 32946, 36822, 41040, 45600, 50540, 55860, 61600, 67760, 74382, 81466, 89056
Offset: 6
Examples
From _Petros Hadjicostas_, May 19 2018: (Start) For n=6, we have the following reversible non-palindromic compositions with 5 parts of n: 1+1+1+1+2 (= 2+1+1+1+1) and 1+1+1+2+1 (= 1+2+1+1+1). Using the process described in the comments, we get the following reversible non-palindromic strings with 4 black balls and n-5=1 white balls: BBBBW (= WBBBB) and BBBWB (= BWBBB). For n=7, we get the following 6 compositions and 6 corresponding strings: 1+1+1+1+3 <-> BBBBWW 1+1+1+3+1 <-> BBBWWB 1+1+1+2+2 <-> BBBWBW 1+1+2+1+2 <-> BBWBBW 1+1+2+2+1 <-> BBWBWB 1+2+1+1+2 <-> BWBBBW (End)
Links
- Colin Barker, Table of n, a(n) for n = 6..1000
- C. G. Bower, Transforms (2)
- Hamzeh Mujahed, Benedek Nagy, Hyper-Wiener Index on Rows of Unit Cells of the BCC Grid, Comptes rendus de l’Académie bulgare des Sciences, Tome 71, No 5, 2018, 675-684. See p. 8.
- Ralf Stephan, Prove or disprove: 100 conjectures from the OEIS, arXiv:math/0409509 [math.CO], 2004.
- Elizabeth Wilmer, Notes on Stephan's conjectures 72, 73 and 74 [broken link].
- Elizabeth Wilmer, Notes on Stephan's conjectures 72, 73 and 74 [cached copy].
- Index entries for linear recurrences with constant coefficients, signature (3,-1,-5,5,1,-3,1)
Crossrefs
Programs
-
Mathematica
Table[If[EvenQ[n],(n^4-10n^3+32n^2-32n)/48,(n^4-10n^3+32n^2-38n+15)/48], {n,6,50}] (* or *) LinearRecurrence[{3,-1,-5,5,1,-3,1},{2,6,16,32,60,100,160},50] (* Harvey P. Dale, Apr 11 2016 *) CoefficientList[Series[-2/((x - 1)^5 (x + 1)^2), {x, 0, 42}], x] (* Robert G. Wilson v, Jun 20 2018 *)
-
PARI
A032091(n)=polcoeff(2/(1-x)^5/(1+x)^2+O(x^(n-5)),n-6) A032091(n)=((n-5)*(n-3)*(n-1)^2+if(n%2==0,6*n-15))/48 \\ M. F. Hasler, May 01 2009
Formula
"BHK[ 5 ]" (reversible, identity, unlabeled, 5 parts) transform of 1, 1, 1, 1, ...
From M. F. Hasler, May 01 2009: (Start)
G.f.: -2*x^6 / ((x-1)^5*(x+1)^2). [corrected by Colin Barker, Mar 07 2015]
a(n) = [(n-5)(n-3)(n-1)^2 + (6n-15) X[2Z](n)]/48, where X[2Z] is the characteristic function of 2Z.
(End)
From Colin Barker, Mar 07 2015: (Start)
a(n) = (n^4-10*n^3+32*n^2-32*n)/48 if n is even.
a(n) = (n^4-10*n^3+32*n^2-38*n+15)/48 if n is odd.
(End)
a(n) = (2*n^4 - 20*n^3 + 64*n^2 + 6*(-1)^n*n - 70*n - 15*(-1)^n + 15)/96. - Ilya Gutkovskiy, Jul 08 2016
From Petros Hadjicostas, May 19 2018: (Start)
a(n) = (1/2)*(binomial(n-1, n-5) - binomial(floor((n-1)/2) - floor((n-5)/2))).
G.f.: (1/2)*(x/(1-x))*((x/(1-x))^4 - (x^2/(1-x^2))^2).
(End)
a(n) = 2*A002624(n-6) - Robert G. Wilson v, Jun 20 2018
Comments