A319436
Number of palindromic plane trees with n nodes.
Original entry on oeis.org
1, 1, 2, 3, 6, 10, 20, 35, 68, 122, 234, 426, 808, 1484, 2798, 5167, 9700, 17974, 33656, 62498, 116826, 217236, 405646, 754938, 1408736, 2623188, 4892848, 9114036, 16995110, 31664136, 59034488, 110004243, 205068892, 382156686, 712363344, 1327600346, 2474618434
Offset: 1
The a(7) = 20 palindromic plane trees:
((((((o)))))) (((((oo))))) ((((ooo)))) (((oooo))) ((ooooo)) (oooooo)
((((o)(o)))) (((o(o)o))) ((o(oo)o)) (o(ooo)o)
(((o))((o))) ((o((o))o)) (o((oo))o) (oo(o)oo)
(((o)o(o))) ((oo)(oo))
(o(((o)))o) ((o)oo(o))
((o)(o)(o)) (o(o)(o)o)
Cf.
A000108,
A000670,
A001003,
A005043,
A008965,
A025065,
A032128,
A118376,
A242414,
A317085,
A317086,
A317087,
A319122,
A319437.
-
panplane[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[panplane/@c],#==Reverse[#]&],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
Table[Length[panplane[n]],{n,10}]
-
PAL(p)={(1+p)/subst(1-p, x, x^2)}
seq(n)={my(p=O(1));for(i=1, n, p=PAL(x*p)); Vec(p)} \\ Andrew Howroyd, Sep 19 2018
A032130
Shifts left under the "BIK" (reversible, indistinct, unlabeled) transform with a(1) = 2.
Original entry on oeis.org
2, 2, 5, 15, 52, 193, 765, 3143, 13323, 57670, 254040, 1134249, 5122124, 23349966, 107310784, 496633774, 2312539465, 10826481544, 50929829953, 240616214596, 1141195080020, 5431477088428, 25933525825389, 124185539096075, 596268057962349, 2869992942831031, 13845453533124431, 66934180769445444, 324218809545624984
Offset: 1
From _Petros Hadjicostas_, Jan 14 2018: (Start)
According to Bower's theory in the link above, we have boxes of different sizes and colors. The size of a box is determined by the number of balls it can hold. Two boxes of the same size and color are considered identical (indistinct and unlabeled). We place the boxes on a line that can be read in either direction; i.e., we have a reversible line.
Here, a(n) = number of colors a box holding n balls can be, while b(n) = number of ways of placing boxes in a line that can be read in either direction when the total number of balls is n.
Since a(1) = 2, a(2) = 2, a(3) = 5, a(4) = 15, etc., a box with 1 ball can be of 2 colors only, a box with 2 balls can be of 2 colors only, a box with 3 balls can be of 5 colors only, a box with 4 balls can be of 15 colors, and so on.
When we have n=3 balls, we have b(3) = a(4) = 15. Here, we consider three cases. In the first case, we have one box holding 3 balls and we have 5 possibilities. In the second case, we have a box with 2 balls and a box with 1 ball, and we have 2 x 2 = 4 possibilities here because the line is reversible (i.e., 21 is considered the same as 12). In the third case, we have three identical boxes each holding 1 ball and we have 6 possibilities (if the colors are a and b, we have the possibilities aaa, aab, aba, bba, bab, and bbb). Thus, b(3) = 5 + 4 + 6 = 15 = a(4).
When we have n=4 balls, we have b(4) = a(5) = 52. Here we consider 5 cases: a single box with 4 balls (a(4) = 15 possibilities); a box with 3 balls and a box with 1 ball (a(3) x a(1) = 5 x 2 = 10 possibilities); two identical boxes each with 2 balls (3 possibilities, aa, ab, and bb); a box with 2 balls and two identical boxes each with 1 ball (14 possibilities, see below); and 4 identical boxes each with 1 ball (10 possibilities, aaaa, aaab, aaba, aabb, abba, baab, abab, abbb, babb, bbbb). Hence, b(4) = 15 + 10 + 3 + 14 + 10 = 52 = a(5).
We explain the fourth case above in more detail. Here, we have a box with 2 balls and two identical boxes each with 1 ball. Let a and b be the two colors for the 1-ball boxes and A and B be the colors for the 2-ball boxes. Then we have the following 14 cases: Aaa, Aab, Abb, Baa, Bab, Bbb, aAa, aAb, bAb, aBa, aBb, bBb, abA, and abB. Note that Aab = baA <> abA = Aba and abB = Bba <> Bab = baB.
(End)
When a(1) = 1, we get sequence
A032128.
-
m = 30; a[1] = 2; A[_] = 0;
Do[A[x_] = x(a[1]+(1/2)(A[x]/(1-A[x])+(A[x]+A[x^2])/(1-A[x^2]))) + O[x]^m // Normal, {m}];
CoefficientList[A[x], x] // Rest (* Jean-François Alcover, Sep 17 2019 *)
-
BIK(p)={(1/(1-p) + (1+p)/subst(1-p, x, x^2))/2}
seq(n)={my(p=O(1));for(i=1, n, p=1+BIK(x*p)); Vec(p)} \\ Andrew Howroyd, Aug 30 2018
A032131
Shifts left 2 places under the "BIK" (reversible, indistinct, unlabeled) transform with a(1) = a(2) = 1.
Original entry on oeis.org
1, 1, 1, 2, 3, 7, 13, 31, 66, 160, 369, 907, 2191, 5461, 13558, 34209, 86426, 220359, 563475, 1449282, 3739365, 9688104, 25173917, 65621067, 171498288, 449361649, 1180078602, 3105740797, 8189749105, 21636207962, 57257857968, 151771200002, 402899862910, 1071076810324, 2851165864937
Offset: 1
-
m = 36; a[1] = a[2] = 1; A[_] = 0;
Do[A[x_] = x^2 (a[1]/x + a[2] + (1/2)(A[x]/(1 - A[x]) + (A[x] + A[x^2])/(1 - A[x^2]))) + O[x]^m // Normal, {m}];
CoefficientList[A[x], x] // Rest (* Jean-François Alcover, Sep 17 2019 *)
-
BIK(p)={(1/(1-p) + (1+p)/subst(1-p, x, x^2))/2}
seq(n)={my(p=1+O(x^(n%2)));for(i=1, n\2, p=1+x*BIK(x*p)); Vec(p)} \\ Andrew Howroyd, Aug 30 2018
A038035
Number of labeled dyslexic planted planar trees with n+1 nodes.
Original entry on oeis.org
1, 2, 9, 72, 840, 12780, 238770, 5281920, 134946000, 3909578400, 126638542800, 4535037460800, 177904622095200, 7586967310322400, 349479111223242000, 17292052928037888000, 914673660594613920000, 51506610632458293312000, 3076341001739003430432000
Offset: 1
-
m = 20;
CoefficientList[InverseSeries[2*x*(1 - x)/(2 - x^2) + O[x]^m], x]*Range[0, m - 1]! // Rest (* Jean-François Alcover, Sep 08 2019 *)
-
Vec(serlaplace(serreverse(2*x*(1 - x)/(2 - x^2) + O(x^20)))) \\ Andrew Howroyd, Sep 19 2018
A032129
Number of dyslexic rooted planar trees with n nodes.
Original entry on oeis.org
1, 1, 2, 4, 9, 21, 55, 146, 413, 1194, 3553, 10756, 33134, 103273, 325484, 1034734, 3314870, 10688513, 34662777, 112976023, 369876832, 1215811262, 4010932603, 13275356936, 44070010202, 146698487202, 489550622528, 1637472527602, 5488829461525, 18435194140301
Offset: 1
-
BIK(p)={(1/(1-p) + (1+p)/subst(1-p, x, x^2))/2}
DIK(p,n)={(sum(d=1, n, eulerphi(d)/d*log(subst(1/(1+O(x*x^(n\d))-p), x, x^d))) + ((1+p)^2/(1-subst(p, x, x^2))-1)/2)/2}
seq(n)={my(p=O(1));for(i=1, n-1, p=BIK(x*p)); Vec(1+DIK(x*p, n))} \\ Andrew Howroyd, Aug 30 2018
Showing 1-5 of 5 results.
Comments