cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A282032 Additive number system based on U.S. coins.

Original entry on oeis.org

1, 2, 3, 4, 5, 10, 15, 20, 25, 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2100, 2200, 2300, 2400, 2500, 2600, 2700, 2800, 2900, 3000, 3100, 3200, 3300, 3400, 3500, 3600, 3700, 3800
Offset: 1

Views

Author

N. J. A. Sloane, Feb 20 2017

Keywords

Comments

Any positive integer can be written uniquely as a sum of at most 5 numbers, one from each row of the following array:
1,2,3,4;
5,10,15,20;
25;
50;
100, 200, 300, 400, 500, ...
(the last row being infinite).

Crossrefs

A032174 and A282034 are two other examples of additive number systems.
A282033 gives a very similar family of sets which is not an additive system.

Programs

  • PARI
    Vec(x*(1 + 4*x^5 + 20*x^9 + 25*x^10 + 50*x^11) / (1 - x)^2 + O(x^50)) \\ Colin Barker, Apr 16 2020

Formula

From Colin Barker, Apr 16 2020: (Start)
G.f.: x*(1 + 4*x^5 + 20*x^9 + 25*x^10 + 50*x^11) / (1 - x)^2.
a(n) = 2*a(n-1) - a(n-2) for n>11.
(End)

A282034 Three-set non-British additive number system read by rows.

Original entry on oeis.org

1, 2, 3, 4, 50, 51, 52, 53, 54, 5, 10, 15, 20, 25, 100, 125, 200, 225, 300, 325, 400, 425, 500, 525, 600, 625, 700, 725, 800, 825, 900, 925, 1000, 1025, 1100, 1125, 1200, 1225, 1300, 1325, 1400, 1425, 1500, 1525, 1600, 1625, 1700, 1725, 1800, 1825, 1900, 1925
Offset: 1

Views

Author

N. J. A. Sloane, Feb 20 2017

Keywords

Comments

Any positive integer can be written uniquely as a sum of at most 3 numbers, one from each row of the following array:
1, 2, 3, 4, 50, 51, 52, 53, 54;
5, 10, 15, 20;
25, 100, 125, 200, 225, 300, 325, 400, 425, 500, 525, 600, 625, 700, 725, 800, 825, 900, 925, 1000, ...
(the last row being infinite).

Crossrefs

A032174 and A282032 are two other examples of additive number systems.

Programs

  • PARI
    Vec(x*(1 + x + 45*x^4 - 45*x^6 - 50*x^9 + 4*x^10 + 54*x^11 + 70*x^14 + 20*x^15) / ((1 - x)^2*(1 + x)) + O(x^50)) \\ Colin Barker, Apr 16 2020

Formula

From Colin Barker, Apr 16 2020: (Start)
G.f.: x*(1 + x + 45*x^4 - 45*x^6 - 50*x^9 + 4*x^10 + 54*x^11 + 70*x^14 + 20*x^15) / ((1 - x)^2*(1 + x)).
a(n) = a(n-1) + a(n-2) - a(n-3) for n>16.
(End)

A032173 Sequence (a(n): n >= 1) that shifts left 2 places under the "CHK" (necklace, identity, unlabeled) transform and has initial terms a(1) = a(2) = 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 7, 12, 28, 55, 122, 258, 574, 1254, 2813, 6283, 14220, 32237, 73631, 168660, 388331, 896790, 2078822, 4832343, 11266422, 26332119, 61694574, 144858260, 340829231, 803427128, 1897269215, 4487725726
Offset: 1

Views

Author

Keywords

Comments

From Petros Hadjicostas, Dec 29 2018: (Start)
a(n+2) = (1/n)*Sum_{d|n} mu(n/d)*c(d), where c(n) = n*a(n) + Sum_{s=1..n-1} c(s)*a(n-s) with a(1) = a(2) = 1, c(1) = 1, and c(2) = 3.
G.f.: If A(x) = Sum_{n>=1} a(n)*x^n, then Sum_{n>=1} a(n+2)*x^n = -Sum_{n>=1} (mu(n)/n)*log(1-A(x^n)).
The g.f. of the auxiliary sequence (c(n): n>=1) is C(x) = Sum_{n>=1} c(n)*x^n = x*(dA(x)/dx)/(1-A(x)) = x + 3*x^2 + 7*x^3 + 15*x^4 + 36*x^5 + 81*x^6 + 197*x^7 + 455*x^8 + 1105*x^9 + 2618*x^10 + ... (The auxiliary sequence is given by sequence A322913.)
(End)
The first two terms of the sequence must be specified. In general, if the sequence (b(n): n >= 1) is such that (b(n+2): n >= 1) = CHK((b(n): n >= 1)), then b(3) = b(1), b(4) = (1/2)*(b(1)^2 + 2*b(2) - b(1)), b(5) = (b(1)/3)*(b(1)^2 + 3*b(2) + 2), and so on. - Petros Hadjicostas, Dec 31 2018

Crossrefs

Programs

  • Mathematica
    a[1] = a[2] = 1; c[1] = 1; c[2] = 3;
    a[n_] := a[n] = 1/(n-2) Sum[MoebiusMu[(n-2)/d] c[d], {d, Divisors[n-2]}];
    c[n_] := c[n] = n a[n] + Sum[c[s] a[n-s], {s, 1, n-1}];
    Array[a, 32] (* Jean-François Alcover, Jan 02 2019 *)
  • PARI
    CHK(p,n)={sum(d=1, n, moebius(d)/d*log(subst(1/(1+O(x*x^(n\d))-p), x, x^d)))}
    seq(n)={my(p=1+O(x));for(i=1, n\2, p=1+x+x*CHK(x*p, 2*i)); Vec(p+O(x^n))} \\ Andrew Howroyd, Jun 20 2018

Extensions

Name modified by Petros Hadjicostas, Jan 01 2019

A282033 An example of a collection of five sets (based on U.S. coinage) which is not an additive number system.

Original entry on oeis.org

1, 2, 3, 4, 5, 10, 20, 25, 50, 75, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2100, 2200, 2300, 2400, 2500, 2600, 2700, 2800, 2900, 3000, 3100, 3200, 3300, 3400, 3500, 3600, 3700
Offset: 1

Views

Author

N. J. A. Sloane, Feb 20 2017

Keywords

Comments

The five sets are the following:
1, 2, 3, 4;
5;
10, 20;
25, 50, 75;
100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, ...
(the last set being infinite).
In contrast to A282032 this is not an additive number system because 26 for example can be represented in two ways as a sum of numbers from distinct sets (26 = 1+5+20 = 1+25).

Crossrefs

Cf. A032174, A282032, A282034 are legitimate examples of additive number systems.

Programs

  • Mathematica
    LinearRecurrence[{2,-1},{1,2,3,4,5,10,20,25,50,75,100,200,300,400},50] (* or *) CoefficientList[Series[x (1+4x^5+5x^6-5x^7+ 20x^8+ 75x^11)/ (1-x)^2, {x,0,50}],x] (* Harvey P. Dale, Aug 04 2021 *)
  • PARI
    Vec(x*(1 + 4*x^5 + 5*x^6 - 5*x^7 + 20*x^8 + 75*x^11) / (1 - x)^2 + O(x^50)) \\ Colin Barker, Apr 16 2020

Formula

From Colin Barker, Apr 16 2020: (Start)
G.f.: x*(1 + 4*x^5 + 5*x^6 - 5*x^7 + 20*x^8 + 75*x^11) / (1 - x)^2.
a(n) = 2*a(n-1) - a(n-2) for n>12.
(End)

A322913 Inverse Moebius transform of the sequence (n*A032173(n+2): n >= 1).

Original entry on oeis.org

1, 3, 7, 15, 36, 81, 197, 455, 1105, 2618, 6315, 15141, 36570, 88161, 213342, 516247, 1251728, 3037059, 7378290, 17938430, 43655465, 106317863, 259127707, 631986437, 1542364386, 3766351332, 9202390342, 22496047757, 55020807236, 134631987776, 329579227722, 807142635031
Offset: 1

Views

Author

Petros Hadjicostas, Dec 30 2018

Keywords

Comments

The sequence (A032173(n): n >= 1) shifts two places to the left under Bower's "CHK" (necklace, identity, unlabeled) transform. The current sequence satisfies A032173(n+2) = (1/n)*Sum_{d|n} mu(d)*a(n/d).

Crossrefs

Programs

  • Mathematica
    (* b = A032173 *) b[1] = b[2] = 1; c[1] = 1; c[2] = 3;
    b[n_] := b[n] = 1/(n-2) Sum[MoebiusMu[(n-2)/d] c[d], {d, Divisors[n-2]}];
    c[n_] := c[n] = n b[n] + Sum[c[s] b[n-s], {s, 1, n-1}];
    a[n_] := Sum[d b[d+2], {d, Divisors[n]}];
    Array[a, 26] (* Jean-François Alcover, Jan 02 2019 *)
  • PARI
    CHK(p, n)={sum(d=1, n, moebius(d)/d*log(subst(1/(1+O(x*x^(n\d))-p), x, x^d)))}
    seq(n)={my(p=1+O(x)); for(i=1, n\2, p=1+x+x*CHK(x*p, 2*i)); Vec(deriv(x*p)/(1-x*p)+O(x^n))} \\ Andrew Howroyd, Apr 27 2020

Formula

a(n) = Sum_{d|n} d*A032173(d+2).
a(n) = n*A032173(n) + Sum_{s=1..n-1} a(s)*A032173(n-s).
G.f.: If A(x) = Sum_{n>=1} a(n)*x^n and B(x) = Sum_{n>=1} A032173(n)*x^n, then A(x) = x*(dB(x)/dx)/(1-B(x)), while (B(x) - x - x^2)/x^2 = Sum_{n>=1} A032173(n+2)*x^n = -Sum_{n>=1} (mu(n)/n)*log(1-B(x^n)).

Extensions

Terms a(27) and beyond from Andrew Howroyd, Apr 27 2020
Showing 1-5 of 5 results.