A032305 Number of rooted trees where any 2 subtrees extending from the same node have a different number of nodes.
1, 1, 1, 2, 3, 6, 12, 25, 51, 111, 240, 533, 1181, 2671, 6014, 13795, 31480, 72905, 168361, 393077, 914784, 2150810, 5040953, 11914240, 28089793, 66702160, 158013093, 376777192, 896262811, 2144279852, 5120176632, 12286984432, 29428496034, 70815501209
Offset: 1
Keywords
Examples
The a(6) = 6 fully unbalanced trees: (((((o))))), (((o(o)))), ((o((o)))), (o(((o)))), (o(o(o))), ((o)((o))). - _Gus Wiseman_, Jan 10 2018
Links
Crossrefs
Programs
-
Maple
A:= proc(n) if n<=1 then x else convert(series(x* (product(1+ coeff(A(n-1), x,i)*x^i, i=1..n-1)), x=0, n+1), polynom) fi end: a:= n-> coeff(A(n), x,n): seq(a(n), n=1..31); # Alois P. Heinz, Aug 22 2008 # second Maple program: g:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(`if`(j=0, 1, g((i-1)$2))*g(n-i*j, i-1), j=0..min(1, n/i)))) end: a:= n-> g((n-1)$2): seq(a(n), n=1..35); # Alois P. Heinz, Mar 04 2013
-
Mathematica
nn=30;f[x_]:=Sum[a[n]x^n,{n,0,nn}];sol=SolveAlways[0 == Series[f[x]-x Product[1+a[i]x^i,{i,1,nn}],{x,0,nn}],x];Table[a[n],{n,1,nn}]/.sol (* Geoffrey Critzer, Nov 17 2012 *) allnim[n_]:=If[n===1,{{}},Join@@Function[c,Select[Union[Sort/@Tuples[allnim/@c]],UnsameQ@@(Count[#,_List,{0,Infinity}]&/@#)&]]/@IntegerPartitions[n-1]]; Table[Length[allnim[n]],{n,15}] (* Gus Wiseman, Jan 10 2018 *) g[n_, i_] := g[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[If[j == 0, 1, g[i-1, i-1]]*g[n-i*j, i-1], {j, 0, Min[1, n/i]}]]]; a[n_] := g[n-1, n-1]; Array[a, 35] (* Jean-François Alcover, May 21 2021, after Alois P. Heinz *)
-
PARI
a(n)=polcoeff(x*prod(i=1,n-1,1+a(i)*x^i)+x*O(x^n),n)
Formula
Shifts left under "EFK" (unordered, size, unlabeled) transform.
G.f.: A(x) = x*Product_{n>=1} (1+a(n)*x^n) = Sum_{n>=1} a(n)*x^n. - Paul D. Hanna, Apr 07 2004
Lim_{n->infinity} a(n)^(1/n) = 2.5119824... - Vaclav Kotesovec, Nov 20 2019
G.f.: x * exp(Sum_{n>=1} Sum_{k>=1} (-1)^(k+1) * a(n)^k * x^(n*k) / k). - Ilya Gutkovskiy, Jun 30 2021