A000598
Number of rooted ternary trees with n nodes; number of n-carbon alkyl radicals C(n)H(2n+1) ignoring stereoisomers.
Original entry on oeis.org
1, 1, 1, 2, 4, 8, 17, 39, 89, 211, 507, 1238, 3057, 7639, 19241, 48865, 124906, 321198, 830219, 2156010, 5622109, 14715813, 38649152, 101821927, 269010485, 712566567, 1891993344, 5034704828, 13425117806, 35866550869, 95991365288, 257332864506, 690928354105
Offset: 0
From _Joerg Arndt_, Feb 25 2017: (Start)
The a(5) = 8 rooted trees with 5 nodes and out-degrees <= 3 are:
: level sequence out-degrees (dots for zeros)
: 1: [ 0 1 2 3 4 ] [ 1 1 1 1 . ]
: O--o--o--o--o
:
: 2: [ 0 1 2 3 3 ] [ 1 1 2 . . ]
: O--o--o--o
: .--o
:
: 3: [ 0 1 2 3 2 ] [ 1 2 1 . . ]
: O--o--o--o
: .--o
:
: 4: [ 0 1 2 3 1 ] [ 2 1 1 . . ]
: O--o--o--o
: .--o
:
: 5: [ 0 1 2 2 2 ] [ 1 3 . . . ]
: O--o--o
: .--o
: .--o
:
: 6: [ 0 1 2 2 1 ] [ 2 2 . . . ]
: O--o--o
: .--o
: .--o
:
: 7: [ 0 1 2 1 2 ] [ 2 1 . 1 . ]
: O--o--o
: .--o--o
:
: 8: [ 0 1 2 1 1 ] [ 3 1 . . . ]
: O--o--o
: .--o
: .--o
(End)
- N. L. Biggs et al., Graph Theory 1736-1936, Oxford, 1976, p. 62 (quoting Cayley, who is wrong).
- A. Cayley, On the mathematical theory of isomers, Phil. Mag. vol. 67 (1874), 444-447 (a(6) is wrong).
- J. L. Faulon, D. Visco and D. Roe, Enumerating Molecules, In: Reviews in Computational Chemistry Vol. 21, Ed. K. Lipkowitz, Wiley-VCH, 2005.
- R. A. Fisher, Contributions to Mathematical Statistics, Wiley, 1950, 41.397.
- J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 529.
- Handbook of Combinatorics, North-Holland '95, p. 1963.
- Knop, Mueller, Szymanski and Trinajstich, Computer generation of certain classes of molecules.
- D. Perry, The number of structural isomers ..., J. Amer. Chem. Soc. 54 (1932), 2918-2920.
- G. Polya, Mathematical and Plausible Reasoning, Vol. 1 Prob. 4 pp. 85; 233.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vaclav Kotesovec, Table of n, a(n) for n = 0..1000 (first 200 terms from N. J. A. Sloane)
- Jean-François Alcover, Mathematica program translated from N. J. A. Sloane's Maple program for A000022, A000200, A000598, A000602, A000678.
- A. T. Balaban, J. W. Kennedy and L. V. Quintas, The number of alkanes having n carbons and a longest chain of length d, J. Chem. Education, 65 (1988), 304-313.
- A. Cayley, On the mathematical theory of isomers, Phil. Mag. vol. 67 (1874), 444-447 (a(6) is wrong). (Annotated scanned copy)
- Frederic Chyzak, Enumerating alcohols and other classes of chemical molecules.
- Maximilian Fichtner, K. Voigt, and S. Schuster, The tip and hidden part of the iceberg: Proteinogenic and non-proteinogenic aliphatic amino acids, Biochimica et Biophysica Acta (BBA)-General, 2016, Volume 1861, Issue 1, Part A, January 2017, pp. 3258-3269.
- P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 478.
- K. Grützmann, S. Böcker, and S. Schuster, Combinatorics of aliphatic amino acids, Naturwissenschaften, Vol. 98, No. 1, 79-86, 2011.
- H. R. Henze and C. M. Blair, The number of structurally isomeric alcohols of the methanol series, J. Amer. Chem. Soc., 53 (8) (1931), 3042-3046.
- H. R. Henze and C. M. Blair, The number of structurally isomeric alcohols of the methanol series, J. Amer. Chem. Soc., 53 (8) (1931), 3042-3045. (Annotated scanned copy)
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 1.
- P. Leroux and B. Miloudi, Généralisations de la formule d'Otter, Ann. Sci. Math. Québec, Vol. 16, No. 1, pp. 53-80, 1992. (Annotated scanned copy)
- Camden A. Parks and James B. Hendrickson, Enumeration of monocyclic and bicyclic carbon skeletons, J. Chem. Inf. Comput. Sci., vol. 31, 334-339 (1991).
- D. Perry, The number of structural isomers of certain homologs of methane and methanol, J. Amer. Chem. Soc. 54 (1932), 2918-2920. [Gives a(60) correctly.] (Annotated scanned copy)
- G. Polya, Algebraische Berechnung der Anzahl der Isomeren einiger organischer Verbindungen, Zeit. f. Kristall., 93 (1936), 415-443; Table I, line 2.
- G. Polya, Algebraische Berechnung der Anzahl der Isomeren einiger organischer Verbindungen, Zeit. f. Kristall., 93 (1936), 415-443; Table I, line 2. (Annotated scanned copy)
- R. C. Read, The Enumeration of Acyclic Chemical Compounds, pp. 25-61 of A. T. Balaban, ed., Chemical Applications of Graph Theory, Ac. Press, 1976. [Annotated scanned copy] See p. 20, Eq. (G); p. 27, Eq. 2.1.
- Marko Riedel, Chris Grossack, Counting trees with a degree constraint, Math StackExchange.
- R. W. Robinson, F. Harary and A. T. Balaban, Numbers of chiral and achiral alkanes and monosubstituted alkanes, Tetrahedron 32 (3) (1976), 355-361.
- R. W. Robinson, F. Harary and A. T. Balaban, Numbers of chiral and achiral alkanes and monosubstituted alkanes, Tetrahedron 32 (3) (1976), 355-361. (Annotated scanned copy)
- Hugo Schiff, Zur Statistik chemischer Verbindungen, Berichte der Deutschen Chemischen Gesellschaft, Vol. 8, pp. 1542-1547, 1875. [Annotated scanned copy]
- N. J. A. Sloane, Maple program and first 60 terms for A000022, A000200, A000598, A000602, A000678.
- N. Trinajstich, Z. Jerievi, J. V. Knop, W. R. Muller and K. Szymanski, Computer Generation of Isomeric Structures, Pure & Appl. Chem., Vol. 55, No. 2, pp. 379-390, 1983.
- Wikipedia, Polya's enumeration theorem.
- Index entries for sequences related to rooted trees
- Index entries for sequences related to trees
Cf.
A000599,
A000600,
A000602,
A000625,
A000628,
A000678,
A010372,
A010373,
A086194,
A086200,
A261340.
-
N := 45; G000598 := 0: i := 0: while i<(N+1) do G000598 := series(1+z*(G000598^3/6+subs(z=z^2,G000598)*G000598/2+subs(z=z^3,G000598)/3)+O(z^(N+1)),z,N+1): t[ i ] := G000598: i := i+1: od: A000598 := n->coeff(G000598,z,n);
# Another Maple program for g.f. G000598:
G000598 := 1; f := proc(n) global G000598; coeff(series(1+(1/6)*x*(G000598^3+3*G000598*subs(x=x^2,G000598)+2*subs(x=x^3,G000598)),x, n+1),x,n); end; for n from 1 to 50 do G000598 := series(G000598+f(n)*x^n,x,n+1); od; G000598;
spec := [S, {Z=Atom, S=Union(Z, Prod(Z, Set(S, card=3)))}, unlabeled]: [seq(combstruct[count](spec, size=n), n=0..20)];
-
m = 45; Clear[f]; f[1, x_] := 1+x; f[n_, x_] := f[n, x] = Expand[1+x*(f[n-1, x]^3/6 + f[n-1, x^2]*f[n-1, x]/2 + f[n-1, x^3]/3)][[1 ;; n]]; Do[f[n, x], {n, 2, m}]; CoefficientList[f[m, x], x]
(* second program (after N. J. A. Sloane): *)
m = 45; gf[] = 0; Do[gf[z] = 1 + z*(gf[z]^3/6 + gf[z^2]*gf[z]/2 + gf[z^3]/3) + O[z]^m // Normal, m]; CoefficientList[gf[z], z] (* Jean-François Alcover, Sep 23 2014, updated Jan 11 2018 *)
b[0, i_, t_, k_] = 1; m = 3; (* m = maximum children *)
b[n_,i_,t_,k_]:= b[n,i,t,k]= If[i<1,0,
Sum[Binomial[b[i-1, i-1, k, k] + j-1, j]*
b[n-i*j, i-1, t-j, k], {j, 0, Min[t, n/i]}]];
Join[{1},Table[b[n-1, n-1, m, m], {n, 1, 35}]] (* Robert A. Russell, Dec 27 2022 *)
-
seq(n)={my(g=O(x)); for(n=1, n, g = 1 + x*(g^3/6 + subst(g,x,x^2)*g/2 + subst(g,x,x^3)/3) + O(x^n)); Vec(g)} \\ Andrew Howroyd, May 22 2018
-
def seq(n):
B = PolynomialRing(QQ, 't', n+1);t = B.gens()
R. = B[[]]
T = sum([t[i] * z^i for i in range(1,n+1)]) + O(z^(n+1))
lhs, rhs = T, 1 + z/6 * (T(z)^3 + 3*T(z)*T(z^2) + 2*T(z^3))
I = B.ideal([lhs.coefficients()[i] - rhs.coefficients()[i] for i in range(n)])
return [I.reduce(t[i]) for i in range(1,n+1)]
seq(33) # Chris Grossack, Mar 31 2025
Additional comments from Steve Strand (snstrand(AT)comcast.net), Aug 20 2003
A298422
Number of rooted trees with n nodes in which all positive outdegrees are the same.
Original entry on oeis.org
1, 1, 2, 2, 3, 2, 5, 2, 6, 4, 9, 2, 20, 2, 26, 12, 53, 2, 120, 2, 223, 43, 454, 2, 1100, 11, 2182, 215, 4902, 2, 11446, 2, 24744, 1242, 56014, 58, 131258, 2, 293550, 7643, 676928, 2, 1582686, 2, 3627780, 49155, 8436382, 2, 19809464, 50, 46027323, 321202
Offset: 1
The a(9) = 6 trees: ((((((((o)))))))), (o(o(o(oo)))), (o((oo)(oo))), ((oo)(o(oo))), (ooo(oooo)), (oooooooo).
Cf.
A000005,
A000081,
A000598,
A001190,
A001678,
A003238,
A004111,
A008864,
A032305,
A067538,
A111299,
A124343,
A143773,
A289078,
A289079,
A295461,
A298118,
A298204,
A298423,
A298424,
A298426.
-
srut[n_]:=srut[n]=If[n===1,{{}},Select[Join@@Function[c,Union[Sort/@Tuples[srut/@c]]]/@Select[IntegerPartitions[n-1],Function[ptn,And@@(Divisible[#-1,Length[ptn]]&/@ptn)]],SameQ@@Length/@Cases[#,{},{0,Infinity}]&]];
Table[srut[n]//Length,{n,20}]
A298118
Number of unlabeled rooted trees with n nodes in which all positive outdegrees are odd.
Original entry on oeis.org
1, 1, 1, 2, 3, 6, 11, 21, 40, 80, 159, 322, 657, 1356, 2816, 5896, 12407, 26267, 55861, 119331, 255878, 550665, 1188786, 2574006, 5588177, 12162141, 26529873, 57993624, 127020653, 278716336, 612617523, 1348680531, 2973564157, 6565313455, 14514675376
Offset: 1
The a(6) = 6 trees: (((((o))))), (((ooo))), ((oo(o))), (oo((o))), (o(o)(o)), (ooooo).
Cf.
A000081,
A000598,
A003238,
A004111,
A027193,
A032305,
A067659,
A290689,
A291443,
A297791,
A298120.
-
orut[n_]:=orut[n]=If[n===1,{{}},Join@@Function[c,Union[Sort/@Tuples[orut/@c]]]/@Select[IntegerPartitions[n-1],OddQ[Length[#]]&]];
Table[Length[orut[n]],{n,15}]
A301462
Number of enriched r-trees of size n.
Original entry on oeis.org
1, 2, 3, 8, 23, 77, 254, 921, 3249, 12133, 44937, 172329, 654895, 2565963, 9956885, 39536964, 156047622, 626262315, 2499486155, 10129445626, 40810378668, 166475139700, 676304156461, 2775117950448, 11342074888693, 46785595997544, 192244951610575, 796245213910406
Offset: 0
The a(3) = 8 enriched r-trees: 3, (2), ((1)), ((())), (11), (1()), (()1), (()()).
Cf.
A000081,
A003238,
A004111,
A032305,
A055277,
A093637,
A127524,
A196545,
A289501,
A290689,
A300443,
A301342-
A301345,
A301364-
A301368,
A301422,
A301467,
A301469,
A301470.
-
ert[n_]:=ert[n]=1+Sum[Times@@ert/@y,{y,IntegerPartitions[n-1]}];
Array[ert,30]
-
seq(n)={my(v=vector(n)); for(n=1, n, v[n] = 1 + polcoef(1/prod(k=1, n-1, 1 - v[k]*x^k + O(x^n)), n-1)); concat([1], v)} \\ Andrew Howroyd, Aug 26 2018
A301467
Number of enriched r-trees of size n with no empty subtrees.
Original entry on oeis.org
1, 2, 4, 8, 20, 48, 136, 360, 1040, 2944, 8704, 25280, 76320, 226720, 692992, 2096640, 6470016, 19799936, 61713152, 190683520, 598033152, 1863995392, 5879859200, 18438913536, 58464724992, 184356152832, 586898946048, 1859875518464, 5941384080384, 18901502482432
Offset: 1
The a(4) = 8 enriched r-trees with no empty subtrees: 4, (3), (21), ((2)), (111), ((11)), ((1)1), (((1))).
The a(5) = 20 enriched r-trees with no empty subtrees:
5,
(4), ((3)), ((21)), (((2))), ((111)), (((11))), (((1)1)), ((((1)))),
(31), (22), (2(1)), ((2)1), ((1)2), ((11)1), ((1)(1)), (((1))1),
(211), ((1)11),
(1111).
Cf.
A000081,
A004111,
A032305,
A055277,
A093637,
A127524,
A196545,
A289501,
A300660,
A301342-
A301345,
A301364-
A301368,
A301422,
A301462,
A301469,
A301470.
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(b(n-i*j, i-1)* a(i)^j, j=0..n/i)))
end:
a:= n-> `if`(n<2, n, 1+b(n-1$2)):
seq(a(n), n=1..30); # Alois P. Heinz, Jun 21 2018
-
pert[n_]:=pert[n]=If[n===1,1,1+Sum[Times@@pert/@y,{y,IntegerPartitions[n-1]}]];
Array[pert,30]
(* Second program: *)
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0,
Sum[b[n - i*j, i - 1] a[i]^j, {j, 0, n/i}]]];
a[n_] := a[n] = If[n < 2, n, 1 + b[n-1, n-1]];
Array[a, 30] (* Jean-François Alcover, May 09 2021, after Alois P. Heinz *)
-
seq(n)={my(v=vector(n)); v[1]=1; for(n=2, n, v[n] = 1 + polcoef(1/prod(k=1, n-1, 1 - v[k]*x^k + O(x^n)), n-1)); v} \\ Andrew Howroyd, Aug 26 2018
A301422
Regular triangle where T(n,k) is the number of r-trees of size n with k leaves.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 4, 3, 1, 0, 1, 6, 8, 4, 1, 0, 1, 9, 19, 14, 5, 1, 0, 1, 12, 36, 40, 21, 6, 1, 0, 1, 16, 65, 102, 75, 30, 7, 1, 0, 1, 20, 106, 223, 224, 123, 40, 8, 1, 0, 1, 25, 168, 457, 604, 439, 191, 52, 9, 1, 0, 1, 30, 248, 847, 1433, 1346, 764, 276
Offset: 1
Triangle begins:
1
1 0
1 1 0
1 2 1 0
1 4 3 1 0
1 6 8 4 1 0
1 9 19 14 5 1 0
1 12 36 40 21 6 1 0
1 16 65 102 75 30 7 1 0
1 20 106 223 224 123 40 8 1 0
1 25 168 457 604 439 191 52 9 1 0
...
The T(6,3) = 8 r-trees: (((ooo))), (((oo)o)), (((o)oo)), (((oo))o), (((o)o)o), ((oo)(o)), (((o))oo), ((o)(o)o).
Cf.
A000081,
A003238,
A004111,
A032305,
A055277,
A093637,
A127524,
A196545,
A289501,
A290689,
A291443,
A297791,
A300443,
A301342-
A301345,
A301364.
-
rtrees[n_]:=Join@@Table[Tuples[rtrees/@y],{y,IntegerPartitions[n-1]}];
Table[Length[Select[rtrees[n],Count[#,{},{-2}]===k&]],{n,8},{k,n}]
-
A(n)={my(v=vector(n)); v[1]=y; for(n=2, n, v[n] = polcoef(1/prod(k=1, n-1, 1 - v[k]*x^k + O(x^n)), n-1)); vector(n, k, Vecrev(v[k]/y,k))}
{ my(T=A(10)); for(n=1, #T, print(T[n])) } \\ Andrew Howroyd, Aug 26 2018
A301480
Number of rooted twice-partitions of n.
Original entry on oeis.org
1, 1, 2, 4, 8, 15, 30, 54, 103, 186, 345, 606, 1115, 1936, 3466, 6046, 10630, 18257, 31927, 54393, 93894, 159631, 272155, 458891, 779375, 1305801, 2196009, 3667242, 6130066, 10170745, 16923127, 27942148, 46211977, 76039205, 125094369, 204952168, 335924597
Offset: 1
The a(5) = 8 rooted twice-partitions: ((3)), ((21)), ((111)), ((2)()), ((11)()), ((1)(1)), ((1)()()), (()()()()).
The a(6) = 15 rooted twice-partitions:
(4), (31), (22), (211), (1111),
(3)(), (21)(), (111)(), (2)(1), (11)(1),
(2)()(), (11)()(), (1)(1)(),
(1)()()(),
()()()()().
Cf.
A001383,
A002865,
A032305,
A063834,
A093637,
A127524,
A196545,
A220418,
A281113,
A289501,
A301422,
A301462,
A301467.
-
nn=30;
ser=x*Product[1/(1-PartitionsP[n-1]x^n),{n,nn}];
Table[SeriesCoefficient[ser,{x,0,n}],{n,nn}]
-
seq(n)={Vec(1/prod(k=1, n-1, 1 - numbpart(k-1)*x^k + O(x^n)))} \\ Andrew Howroyd, Aug 29 2018
A124343
Number of rooted trees on n nodes with thinning limbs.
Original entry on oeis.org
1, 1, 2, 3, 6, 10, 21, 38, 78, 153, 314, 632, 1313, 2700, 5646, 11786, 24831, 52348, 111027, 235834, 502986, 1074739, 2303146, 4944507, 10639201, 22930493, 49511948, 107065966, 231874164, 502834328, 1091842824, 2373565195, 5165713137, 11254029616, 24542260010
Offset: 1
The a(5) = 6 trees are ((((o)))), (o((o))), (o(oo)), ((o)(o)), (oo(o)), (oooo). - _Gus Wiseman_, Jan 25 2018
-
b:= proc(n, i, h, v) option remember; `if`(n=0,
`if`(v=0, 1, 0), `if`(i<1 or v<1 or n A(n$2):
seq(a(n), n=1..35); # Alois P. Heinz, Jul 08 2014
-
b[n_, i_, h_, v_] := b[n, i, h, v] = If[n==0, If[v==0, 1, 0], If[i<1 || v<1 || nJean-François Alcover, Mar 01 2016, after Alois P. Heinz *)
A301342
Regular triangle where T(n,k) is the number of rooted identity trees with n nodes and k leaves.
Original entry on oeis.org
1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 2, 0, 0, 0, 1, 4, 1, 0, 0, 0, 1, 6, 5, 0, 0, 0, 0, 1, 9, 13, 2, 0, 0, 0, 0, 1, 12, 28, 11, 0, 0, 0, 0, 0, 1, 16, 53, 40, 3, 0, 0, 0, 0, 0, 1, 20, 91, 109, 26, 0, 0, 0, 0, 0, 0, 1, 25, 146, 254, 116, 6, 0, 0, 0, 0, 0, 0, 1, 30, 223, 524, 387, 61, 0, 0, 0, 0, 0, 0, 0, 1, 36
Offset: 1
Triangle begins:
1
1 0
1 0 0
1 1 0 0
1 2 0 0 0
1 4 1 0 0 0
1 6 5 0 0 0 0
1 9 13 2 0 0 0 0
1 12 28 11 0 0 0 0 0
1 16 53 40 3 0 0 0 0 0
1 20 91 109 26 0 0 0 0 0 0
1 25 146 254 116 6 0 0 0 0 0 0
1 30 223 524 387 61 0 0 0 0 0 0 0
The T(6,2) = 4 rooted identity trees: (((o(o)))), ((o((o)))), (o(((o)))), ((o)((o))).
A version with the zeroes removed is
A055327.
Cf.
A000081,
A001190,
A003238,
A004111,
A032305,
A055277,
A273873,
A276625,
A277098,
A290689,
A298118,
A298422,
A298426,
A301343,
A301344,
A301345.
-
irut[n_]:=irut[n]=If[n===1,{{}},Join@@Function[c,Select[Union[Sort/@Tuples[irut/@c]],UnsameQ@@#&]]/@IntegerPartitions[n-1]];
Table[Length[Select[irut[n],Count[#,{},{-2}]===k&]],{n,8},{k,n}]
A318753
Number A(n,k) of rooted trees with n nodes such that no more than k subtrees extending from the same node have the same number of nodes; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 2, 2, 0, 0, 1, 1, 2, 3, 3, 0, 0, 1, 1, 2, 4, 7, 6, 0, 0, 1, 1, 2, 4, 8, 15, 12, 0, 0, 1, 1, 2, 4, 9, 18, 34, 25, 0, 0, 1, 1, 2, 4, 9, 19, 43, 79, 51, 0, 0, 1, 1, 2, 4, 9, 20, 46, 102, 190, 111, 0, 0, 1, 1, 2, 4, 9, 20, 47, 110, 250, 457, 240, 0
Offset: 0
Square array A(n,k) begins:
0, 0, 0, 0, 0, 0, 0, 0, 0, ...
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 2, 2, 2, 2, 2, 2, ...
0, 2, 3, 4, 4, 4, 4, 4, 4, ...
0, 3, 7, 8, 9, 9, 9, 9, 9, ...
0, 6, 15, 18, 19, 20, 20, 20, 20, ...
0, 12, 34, 43, 46, 47, 48, 48, 48, ...
0, 25, 79, 102, 110, 113, 114, 115, 115, ...
Columns k=0-10 give:
A063524,
A032305,
A213920,
A318797,
A318798,
A318799,
A318800,
A318801,
A318802,
A318803,
A318804.
-
g:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
binomial(A(i, k)+j-1, j)*g(n-i*j, i-1, k), j=0..min(k, n/i))))
end:
A:= (n, k)-> g(n-1$2, k):
seq(seq(A(n, d-n), n=0..d), d=0..14);
-
g[n_, i_, k_] := g[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[A[i, k] + j - 1, j]*g[n - i*j, i - 1, k], {j, 0, Min[k, n/i]}]]];
A[n_, k_] := g[n - 1, n - 1, k];
Table[A[n, d - n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, May 27 2019, after Alois P. Heinz *)
Showing 1-10 of 53 results.
Comments