cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A298422 Number of rooted trees with n nodes in which all positive outdegrees are the same.

Original entry on oeis.org

1, 1, 2, 2, 3, 2, 5, 2, 6, 4, 9, 2, 20, 2, 26, 12, 53, 2, 120, 2, 223, 43, 454, 2, 1100, 11, 2182, 215, 4902, 2, 11446, 2, 24744, 1242, 56014, 58, 131258, 2, 293550, 7643, 676928, 2, 1582686, 2, 3627780, 49155, 8436382, 2, 19809464, 50, 46027323, 321202
Offset: 1

Views

Author

Gus Wiseman, Jan 19 2018

Keywords

Comments

Row sums of A298426.

Examples

			The a(9) = 6 trees: ((((((((o)))))))), (o(o(o(oo)))), (o((oo)(oo))), ((oo)(o(oo))), (ooo(oooo)), (oooooooo).
		

Crossrefs

Programs

  • Mathematica
    srut[n_]:=srut[n]=If[n===1,{{}},Select[Join@@Function[c,Union[Sort/@Tuples[srut/@c]]]/@Select[IntegerPartitions[n-1],Function[ptn,And@@(Divisible[#-1,Length[ptn]]&/@ptn)]],SameQ@@Length/@Cases[#,{},{0,Infinity}]&]];
    Table[srut[n]//Length,{n,20}]

Formula

a(n) = 2 <=> n in {A008864}. - Alois P. Heinz, Jan 20 2018

Extensions

a(44)-a(52) from Alois P. Heinz, Jan 20 2018

A244657 Number T(n,k) of n-node unlabeled rooted trees with thinning limbs and root outdegree (branching factor) k; triangle T(n,k), n>=1, 0<=k<=n-1, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 3, 1, 1, 0, 1, 4, 3, 1, 1, 0, 1, 9, 6, 3, 1, 1, 0, 1, 13, 13, 6, 3, 1, 1, 0, 1, 26, 25, 15, 6, 3, 1, 1, 0, 1, 42, 55, 29, 15, 6, 3, 1, 1, 0, 1, 81, 107, 68, 31, 15, 6, 3, 1, 1, 0, 1, 138, 224, 140, 72, 31, 15, 6, 3, 1, 1
Offset: 1

Views

Author

Alois P. Heinz, Jul 04 2014

Keywords

Comments

In a rooted tree with thinning limbs the outdegree of a parent node is larger than or equal to the outdegree of any of its child nodes.

Examples

			The A124343(5) = 6 5-node rooted trees with thinning limbs sorted by root outdegree are:
:  o  :   o       o     o   :   o   :    o    :
:  |  :  / \     / \   / \  :  /|\  :  /( )\  :
:  o  : o   o   o   o o   o : o o o : o o o o :
:  |  : |      / \    |   | : |     :         :
:  o  : o     o   o   o   o : o     :         :
:  |  : |                   :       :         :
:  o  : o                   :       :         :
:  |  :                     :       :         :
:  o  :                     :       :         :
:     :                     :       :         :
: -1- : ---------2--------- : --3-- : ---4--- :
Thus row 5 = [0, 1, 3, 1, 1].
Triangle T(n,k) begins:
  1;
  0, 1;
  0, 1,  1;
  0, 1,  1,   1;
  0, 1,  3,   1,  1;
  0, 1,  4,   3,  1,  1;
  0, 1,  9,   6,  3,  1,  1;
  0, 1, 13,  13,  6,  3,  1, 1;
  0, 1, 26,  25, 15,  6,  3, 1, 1;
  0, 1, 42,  55, 29, 15,  6, 3, 1, 1;
  0, 1, 81, 107, 68, 31, 15, 6, 3, 1, 1;
		

Crossrefs

Columns k=0-10 give: A000007(n-1), A000012 (for n>1), A244703, A244704, A244705, A244706, A244707, A244708, A244709, A244710, A244711.
T(2n,n) gives A244712.
Row sums give A124343.

Programs

  • Maple
    b:= proc(n, i, h, v) option remember; `if`(n=0,
          `if`(v=0, 1, 0), `if`(i<1 or v<1 or n b(n-1$2, k$2):
    seq(seq(T(n, k), k=0..n-1), n=1..14);
  • Mathematica
    b[n_, i_, h_, v_] := b[n, i, h, v] = If[n == 0, If[v == 0, 1, 0], If[i<1 || v<1 || nJean-François Alcover, Feb 03 2015, after Alois P. Heinz *)

A124344 Number of ordered rooted trees on n nodes with thinning limbs.

Original entry on oeis.org

1, 1, 2, 4, 10, 25, 68, 187, 530, 1523, 4447, 13121, 39107, 117490, 355507, 1082234, 3312255, 10185125, 31450633, 97480337, 303157086, 945671951, 2958113722, 9276528602, 29158191215, 91845796986, 289874628176, 916536727561
Offset: 1

Views

Author

Christian G. Bower, Oct 30 2006, suggested by Franklin T. Adams-Watters

Keywords

Comments

A rooted tree with thinning limbs is such that if a node has k children, all its children have at most k children.

Crossrefs

Row sums of A124328.

Formula

G.f.: A(x) = A0(x)+A1(x)+A2(x)+... where A0(x)=x, An(x) = x*(A0(x)+A1(x)+...+An(x))^n.

A124348 Number of increasing rooted trees on n nodes with thinning limbs.

Original entry on oeis.org

1, 1, 2, 5, 19, 87, 484, 3110, 22869, 188938, 1735684, 17544342, 193537909, 2313316683, 29780777636, 410783319119, 6043874244604, 94478706232996, 1563722273109142, 27318062153696564, 502345167237496931
Offset: 1

Views

Author

Christian G. Bower, Oct 30 2006, suggested by Franklin T. Adams-Watters

Keywords

Comments

A rooted tree with thinning limbs is such that if a node has k children, all its children have at most k children.
In an increasing rooted tree, nodes are numbered and numbers increase as you move away from root.

Crossrefs

A298304 Number of rooted trees on n nodes with strictly thinning limbs.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 7, 12, 19, 31, 51, 85, 144, 245, 417, 712, 1221, 2091, 3600, 6216, 10763, 18691, 32546, 56782, 99271, 173849, 304877, 535412, 941385, 1657069, 2919930, 5150546, 9093894, 16071634, 28428838, 50331137, 89181251, 158145233, 280650225, 498410197
Offset: 1

Views

Author

Gus Wiseman, Jan 16 2018

Keywords

Comments

An unlabeled rooted tree has strictly thinning limbs if its outdegrees are strictly decreasing from root to leaves.

Examples

			The a(7) = 7 trees: (oo(o(o))), (o(o)(oo)), (ooo(oo)), ((o)(o)(o)), (oo(o)(o)), (oooo(o)), (oooooo).
		

Crossrefs

Programs

  • Mathematica
    stinctQ[t_]:=And@@Cases[t,b_List:>Length[b]>Max@@Length/@b,{0,Infinity}];
    strut[n_]:=strut[n]=If[n===1,{{}},Select[Join@@Function[c,Union[Sort/@Tuples[strut/@c]]]/@IntegerPartitions[n-1],stinctQ]];
    Table[Length[strut[n]],{n,20}]

Extensions

a(26)-a(40) from Alois P. Heinz, Jan 17 2018

A124346 Number of rooted identity trees on n nodes with thinning limbs.

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 6, 11, 17, 32, 56, 102, 184, 340, 624, 1161, 2156, 4036, 7562, 14234, 26828, 50747, 96125, 182545, 347187, 661618, 1262583, 2413275, 4618571, 8850905, 16981142, 32616900, 62713951, 120703497, 232527392, 448344798, 865182999, 1670884073
Offset: 1

Views

Author

Christian G. Bower, Oct 30 2006, suggested by Franklin T. Adams-Watters

Keywords

Comments

A rooted tree with thinning limbs is such that if a node has k children, all its children have at most k children.

Examples

			The a(7) = 6 trees are ((((((o)))))), (o((((o))))), (o(o((o)))), ((o)(((o)))), ((o)(o(o))), (o(o)((o))). - _Gus Wiseman_, Jan 25 2018
		

Crossrefs

Programs

  • Mathematica
    idthinQ[t_]:=And@@Cases[t,b_List:>UnsameQ@@b&&Length[b]>=Max@@Length/@b,{0,Infinity}];
    itrut[n_]:=itrut[n]=If[n===1,{{}},Select[Join@@Function[c,Union[Sort/@Tuples[itrut/@c]]]/@IntegerPartitions[n-1],idthinQ]];
    Table[Length[itrut[n]],{n,25}] (* Gus Wiseman, Jan 25 2018 *)

A298305 Matula-Goebel numbers of rooted trees with strictly thinning limbs.

Original entry on oeis.org

1, 2, 4, 6, 8, 9, 12, 16, 18, 24, 27, 28, 32, 36, 42, 48, 52, 54, 56, 63, 64, 72, 78, 81, 84, 92, 96, 98, 104, 108, 112, 117, 126, 128, 138, 144, 147, 152, 156, 162, 168, 182, 184, 189, 192, 196, 207, 208, 216, 224, 228, 234, 243, 252, 256, 273, 276, 288, 294
Offset: 1

Views

Author

Gus Wiseman, Jan 16 2018

Keywords

Comments

An unlabeled rooted tree has strictly thinning limbs if its outdegrees are strictly decreasing from root to leaves.

Examples

			Sequence of trees begins:
1  o
2  (o)
4  (oo)
6  (o(o))
8  (ooo)
9  ((o)(o))
12 (oo(o))
16 (oooo)
18 (o(o)(o))
24 (ooo(o))
27 ((o)(o)(o))
28 (oo(oo))
32 (ooooo)
36 (oo(o)(o))
42 (o(o)(oo))
48 (oooo(o))
52 (oo(o(o)))
54 (o(o)(o)(o))
56 (ooo(oo))
63 ((o)(o)(oo))
64 (oooooo)
72 (ooo(o)(o))
78 (o(o)(o(o)))
81 ((o)(o)(o)(o))
84 (oo(o)(oo))
92 (oo((o)(o)))
96 (ooooo(o))
98 (o(oo)(oo))
		

Crossrefs

Programs

  • Mathematica
    MGtree[n_]:=If[n===1,{},MGtree/@Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    strthinQ[t_]:=And@@Cases[t,b_List:>Length[b]>Max@@Length/@b,{0,Infinity}];
    Select[Range[200],strthinQ[MGtree[#]]&]

A298303 Matula-Goebel numbers of rooted trees with thinning limbs.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 31, 32, 33, 35, 36, 39, 40, 42, 44, 45, 46, 48, 49, 50, 52, 54, 55, 56, 58, 60, 62, 63, 64, 65, 66, 69, 70, 72, 75, 76, 77, 78, 80, 81, 84, 86, 87, 88, 90, 91, 92, 93, 94
Offset: 1

Views

Author

Gus Wiseman, Jan 16 2018

Keywords

Comments

An unlabeled rooted tree has thinning limbs if its outdegrees are weakly decreasing from root to leaves.

Crossrefs

Programs

  • Mathematica
    MGtree[n_]:=If[n===1,{},MGtree/@Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    thinQ[t_]:=And@@Cases[t,b_List:>Length[b]>=Max@@Length/@b,{0,Infinity}];
    Select[Range[200],thinQ[MGtree[#]]&]

A298478 Number of unlabeled rooted trees with n nodes in which all positive outdegrees are different.

Original entry on oeis.org

1, 1, 1, 3, 3, 5, 13, 15, 23, 34, 95, 106, 176, 241, 374, 942, 1129, 1760, 2515, 3711, 5136, 12857, 14911, 23814, 33002, 49141, 65798, 97056, 209707, 255042, 389725, 545290, 790344, 1071010, 1525919, 2043953, 4272124, 5110583, 7772247, 10611491, 15447864, 20496809
Offset: 1

Views

Author

Gus Wiseman, Jan 19 2018

Keywords

Comments

a(n) is the number of labeled trees with sum of the labels equal to n-1 and the outdegree of every node less than or equal to the value of its label. - Andrew Howroyd, Feb 02 2021

Examples

			The a(7) = 13 trees: ((o(ooo))), ((oo(oo))), ((ooooo)), (o((ooo))), (o(oo(o))), (o(oooo)), ((o)(ooo)), (oo((oo))), (oo(o(o))), (o(o)(oo)), (ooo(oo)), (oooo(o)), (oooooo).
		

Crossrefs

Programs

  • Mathematica
    krut[n_]:=krut[n]=If[n===1,{{}},Select[Join@@Function[c,Union[Sort/@Tuples[krut/@c]]]/@IntegerPartitions[n-1],UnsameQ@@Length/@Cases[#,{},{0,Infinity}]&]];
    Table[krut[n]//Length,{n,15}]
  • PARI
    relabel(b)={my(w=hammingweight(b)); b = bitand((1<Andrew Howroyd, Feb 02 2021

Extensions

a(27)-a(34) from Robert G. Wilson v, Jan 19 2018
Terms a(35) and beyond from Andrew Howroyd, Feb 02 2021

A124345 Number of mobiles (circular rooted trees) on n nodes with thinning limbs.

Original entry on oeis.org

1, 1, 2, 3, 6, 10, 24, 47, 113, 258, 624, 1492, 3694, 9090, 22753, 57111, 144541, 367243, 938449, 2406720, 6198045, 16013447, 41507254, 107887092, 281170859, 734518306, 1923119062, 5045423169, 13262334340, 34923020733, 92113656841
Offset: 1

Views

Author

Christian G. Bower, Oct 30 2006, suggested by Franklin T. Adams-Watters

Keywords

Comments

A rooted tree with thinning limbs is such that if a node has k children, all its children have at most k children.

Crossrefs

Showing 1-10 of 12 results. Next