A298422
Number of rooted trees with n nodes in which all positive outdegrees are the same.
Original entry on oeis.org
1, 1, 2, 2, 3, 2, 5, 2, 6, 4, 9, 2, 20, 2, 26, 12, 53, 2, 120, 2, 223, 43, 454, 2, 1100, 11, 2182, 215, 4902, 2, 11446, 2, 24744, 1242, 56014, 58, 131258, 2, 293550, 7643, 676928, 2, 1582686, 2, 3627780, 49155, 8436382, 2, 19809464, 50, 46027323, 321202
Offset: 1
The a(9) = 6 trees: ((((((((o)))))))), (o(o(o(oo)))), (o((oo)(oo))), ((oo)(o(oo))), (ooo(oooo)), (oooooooo).
Cf.
A000005,
A000081,
A000598,
A001190,
A001678,
A003238,
A004111,
A008864,
A032305,
A067538,
A111299,
A124343,
A143773,
A289078,
A289079,
A295461,
A298118,
A298204,
A298423,
A298424,
A298426.
-
srut[n_]:=srut[n]=If[n===1,{{}},Select[Join@@Function[c,Union[Sort/@Tuples[srut/@c]]]/@Select[IntegerPartitions[n-1],Function[ptn,And@@(Divisible[#-1,Length[ptn]]&/@ptn)]],SameQ@@Length/@Cases[#,{},{0,Infinity}]&]];
Table[srut[n]//Length,{n,20}]
A244657
Number T(n,k) of n-node unlabeled rooted trees with thinning limbs and root outdegree (branching factor) k; triangle T(n,k), n>=1, 0<=k<=n-1, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 3, 1, 1, 0, 1, 4, 3, 1, 1, 0, 1, 9, 6, 3, 1, 1, 0, 1, 13, 13, 6, 3, 1, 1, 0, 1, 26, 25, 15, 6, 3, 1, 1, 0, 1, 42, 55, 29, 15, 6, 3, 1, 1, 0, 1, 81, 107, 68, 31, 15, 6, 3, 1, 1, 0, 1, 138, 224, 140, 72, 31, 15, 6, 3, 1, 1
Offset: 1
The A124343(5) = 6 5-node rooted trees with thinning limbs sorted by root outdegree are:
: o : o o o : o : o :
: | : / \ / \ / \ : /|\ : /( )\ :
: o : o o o o o o : o o o : o o o o :
: | : | / \ | | : | : :
: o : o o o o o : o : :
: | : | : : :
: o : o : : :
: | : : : :
: o : : : :
: : : : :
: -1- : ---------2--------- : --3-- : ---4--- :
Thus row 5 = [0, 1, 3, 1, 1].
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 1;
0, 1, 1, 1;
0, 1, 3, 1, 1;
0, 1, 4, 3, 1, 1;
0, 1, 9, 6, 3, 1, 1;
0, 1, 13, 13, 6, 3, 1, 1;
0, 1, 26, 25, 15, 6, 3, 1, 1;
0, 1, 42, 55, 29, 15, 6, 3, 1, 1;
0, 1, 81, 107, 68, 31, 15, 6, 3, 1, 1;
Columns k=0-10 give:
A000007(n-1),
A000012 (for n>1),
A244703,
A244704,
A244705,
A244706,
A244707,
A244708,
A244709,
A244710,
A244711.
-
b:= proc(n, i, h, v) option remember; `if`(n=0,
`if`(v=0, 1, 0), `if`(i<1 or v<1 or n b(n-1$2, k$2):
seq(seq(T(n, k), k=0..n-1), n=1..14);
-
b[n_, i_, h_, v_] := b[n, i, h, v] = If[n == 0, If[v == 0, 1, 0], If[i<1 || v<1 || nJean-François Alcover, Feb 03 2015, after Alois P. Heinz *)
A124344
Number of ordered rooted trees on n nodes with thinning limbs.
Original entry on oeis.org
1, 1, 2, 4, 10, 25, 68, 187, 530, 1523, 4447, 13121, 39107, 117490, 355507, 1082234, 3312255, 10185125, 31450633, 97480337, 303157086, 945671951, 2958113722, 9276528602, 29158191215, 91845796986, 289874628176, 916536727561
Offset: 1
A124348
Number of increasing rooted trees on n nodes with thinning limbs.
Original entry on oeis.org
1, 1, 2, 5, 19, 87, 484, 3110, 22869, 188938, 1735684, 17544342, 193537909, 2313316683, 29780777636, 410783319119, 6043874244604, 94478706232996, 1563722273109142, 27318062153696564, 502345167237496931
Offset: 1
A298304
Number of rooted trees on n nodes with strictly thinning limbs.
Original entry on oeis.org
1, 1, 1, 2, 3, 4, 7, 12, 19, 31, 51, 85, 144, 245, 417, 712, 1221, 2091, 3600, 6216, 10763, 18691, 32546, 56782, 99271, 173849, 304877, 535412, 941385, 1657069, 2919930, 5150546, 9093894, 16071634, 28428838, 50331137, 89181251, 158145233, 280650225, 498410197
Offset: 1
The a(7) = 7 trees: (oo(o(o))), (o(o)(oo)), (ooo(oo)), ((o)(o)(o)), (oo(o)(o)), (oooo(o)), (oooooo).
-
stinctQ[t_]:=And@@Cases[t,b_List:>Length[b]>Max@@Length/@b,{0,Infinity}];
strut[n_]:=strut[n]=If[n===1,{{}},Select[Join@@Function[c,Union[Sort/@Tuples[strut/@c]]]/@IntegerPartitions[n-1],stinctQ]];
Table[Length[strut[n]],{n,20}]
A124346
Number of rooted identity trees on n nodes with thinning limbs.
Original entry on oeis.org
1, 1, 1, 2, 2, 4, 6, 11, 17, 32, 56, 102, 184, 340, 624, 1161, 2156, 4036, 7562, 14234, 26828, 50747, 96125, 182545, 347187, 661618, 1262583, 2413275, 4618571, 8850905, 16981142, 32616900, 62713951, 120703497, 232527392, 448344798, 865182999, 1670884073
Offset: 1
The a(7) = 6 trees are ((((((o)))))), (o((((o))))), (o(o((o)))), ((o)(((o)))), ((o)(o(o))), (o(o)((o))). - _Gus Wiseman_, Jan 25 2018
-
idthinQ[t_]:=And@@Cases[t,b_List:>UnsameQ@@b&&Length[b]>=Max@@Length/@b,{0,Infinity}];
itrut[n_]:=itrut[n]=If[n===1,{{}},Select[Join@@Function[c,Union[Sort/@Tuples[itrut/@c]]]/@IntegerPartitions[n-1],idthinQ]];
Table[Length[itrut[n]],{n,25}] (* Gus Wiseman, Jan 25 2018 *)
A298305
Matula-Goebel numbers of rooted trees with strictly thinning limbs.
Original entry on oeis.org
1, 2, 4, 6, 8, 9, 12, 16, 18, 24, 27, 28, 32, 36, 42, 48, 52, 54, 56, 63, 64, 72, 78, 81, 84, 92, 96, 98, 104, 108, 112, 117, 126, 128, 138, 144, 147, 152, 156, 162, 168, 182, 184, 189, 192, 196, 207, 208, 216, 224, 228, 234, 243, 252, 256, 273, 276, 288, 294
Offset: 1
Sequence of trees begins:
1 o
2 (o)
4 (oo)
6 (o(o))
8 (ooo)
9 ((o)(o))
12 (oo(o))
16 (oooo)
18 (o(o)(o))
24 (ooo(o))
27 ((o)(o)(o))
28 (oo(oo))
32 (ooooo)
36 (oo(o)(o))
42 (o(o)(oo))
48 (oooo(o))
52 (oo(o(o)))
54 (o(o)(o)(o))
56 (ooo(oo))
63 ((o)(o)(oo))
64 (oooooo)
72 (ooo(o)(o))
78 (o(o)(o(o)))
81 ((o)(o)(o)(o))
84 (oo(o)(oo))
92 (oo((o)(o)))
96 (ooooo(o))
98 (o(oo)(oo))
Cf.
A000081,
A007097,
A061775,
A111299,
A124343,
A124346,
A214577,
A276625,
A290760,
A291636,
A298126,
A298120,
A298304.
-
MGtree[n_]:=If[n===1,{},MGtree/@Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
strthinQ[t_]:=And@@Cases[t,b_List:>Length[b]>Max@@Length/@b,{0,Infinity}];
Select[Range[200],strthinQ[MGtree[#]]&]
A298303
Matula-Goebel numbers of rooted trees with thinning limbs.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 31, 32, 33, 35, 36, 39, 40, 42, 44, 45, 46, 48, 49, 50, 52, 54, 55, 56, 58, 60, 62, 63, 64, 65, 66, 69, 70, 72, 75, 76, 77, 78, 80, 81, 84, 86, 87, 88, 90, 91, 92, 93, 94
Offset: 1
Cf.
A000081,
A007097,
A061775,
A111299,
A124343,
A124346,
A214577,
A276625,
A290760,
A291636,
A298126,
A298120,
A298304,
A298305.
-
MGtree[n_]:=If[n===1,{},MGtree/@Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
thinQ[t_]:=And@@Cases[t,b_List:>Length[b]>=Max@@Length/@b,{0,Infinity}];
Select[Range[200],thinQ[MGtree[#]]&]
A298478
Number of unlabeled rooted trees with n nodes in which all positive outdegrees are different.
Original entry on oeis.org
1, 1, 1, 3, 3, 5, 13, 15, 23, 34, 95, 106, 176, 241, 374, 942, 1129, 1760, 2515, 3711, 5136, 12857, 14911, 23814, 33002, 49141, 65798, 97056, 209707, 255042, 389725, 545290, 790344, 1071010, 1525919, 2043953, 4272124, 5110583, 7772247, 10611491, 15447864, 20496809
Offset: 1
The a(7) = 13 trees: ((o(ooo))), ((oo(oo))), ((ooooo)), (o((ooo))), (o(oo(o))), (o(oooo)), ((o)(ooo)), (oo((oo))), (oo(o(o))), (o(o)(oo)), (ooo(oo)), (oooo(o)), (oooooo).
Cf.
A000081,
A001190,
A001678,
A004111,
A032305,
A124343,
A290689,
A295461,
A298118,
A298304,
A298422,
A298479.
-
krut[n_]:=krut[n]=If[n===1,{{}},Select[Join@@Function[c,Union[Sort/@Tuples[krut/@c]]]/@IntegerPartitions[n-1],UnsameQ@@Length/@Cases[#,{},{0,Infinity}]&]];
Table[krut[n]//Length,{n,15}]
-
relabel(b)={my(w=hammingweight(b)); b = bitand((1<Andrew Howroyd, Feb 02 2021
A124345
Number of mobiles (circular rooted trees) on n nodes with thinning limbs.
Original entry on oeis.org
1, 1, 2, 3, 6, 10, 24, 47, 113, 258, 624, 1492, 3694, 9090, 22753, 57111, 144541, 367243, 938449, 2406720, 6198045, 16013447, 41507254, 107887092, 281170859, 734518306, 1923119062, 5045423169, 13262334340, 34923020733, 92113656841
Offset: 1
Showing 1-10 of 12 results.
Comments