A032528 Concentric hexagonal numbers: floor(3*n^2/2).
0, 1, 6, 13, 24, 37, 54, 73, 96, 121, 150, 181, 216, 253, 294, 337, 384, 433, 486, 541, 600, 661, 726, 793, 864, 937, 1014, 1093, 1176, 1261, 1350, 1441, 1536, 1633, 1734, 1837, 1944, 2053, 2166, 2281, 2400, 2521, 2646, 2773, 2904, 3037, 3174, 3313, 3456, 3601, 3750
Offset: 0
Examples
From _Omar E. Pol_, Aug 20 2011: (Start) Using the numbers A008458 we can write: 0, 1, 6, 12, 18, 24, 30, 36, 42, 48, 54, ... 0, 0, 0, 1, 6, 12, 18, 24, 30, 36, 42, ... 0, 0, 0, 0, 0, 1, 6, 12, 18, 24, 30, ... 0, 0, 0, 0, 0, 0, 0, 1, 6, 12, 18, ... 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 6, ... And so on. =========================================== The sums of the columns give this sequence: 0, 1, 6, 13, 24, 37, 54, 73, 96, 121, 150, ... ... Illustration of initial terms as concentric hexagons: . . o o o o o . o o o o o o . o o o o o o o o o o . o o o o o o o o o o o o . o o o o o o o o o o o o o o o . o o o o o o o o o o o o . o o o o o o o o o o . o o o o o o . o o o o o . . 1 6 13 24 37 . (End)
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
- Index entries for sequences related to cellular automata.
Crossrefs
Programs
-
Haskell
a032528 n = a032528_list !! n a032528_list = scanl (+) 0 a007310_list -- Reinhard Zumkeller, Jan 07 2012
-
Magma
[Floor(3*n^2/2): n in [0..50]]; // Vincenzo Librandi, Aug 21 2011
-
Mathematica
f[n_, m_] := Sum[Floor[n^2/k], {k, 1, m}]; t = Table[f[n, 2], {n, 1, 90}] (* Clark Kimberling, Apr 20 2012 *)
-
PARI
a(n)=3*n^2\2 \\ Charles R Greathouse IV, Sep 24 2015
Formula
From Joerg Arndt, Aug 22 2011: (Start)
G.f.: (x+4*x^2+x^3)/(1-2*x+2*x^3-x^4) = x*(1+4*x+x^2)/((1+x)*(1-x)^3).
a(n) = +2*a(n-1) -2*a(n-3) +1*a(n-4). (End)
a(n) = (6*n^2+(-1)^n-1)/4. - Bruno Berselli, Aug 22 2011
a(n) = A184533(n), n >= 2. - Clark Kimberling, Apr 20 2012
From Paul Curtz, Mar 31 2019: (Start)
a(-n) = a(n).
a(n) = a(n-2) + 6*(n-1) for n > 1.
a(2*n) = A033581(n).
a(2*n+1) = A003154(n+1). (End)
E.g.f.: (3*x*(x + 1)*cosh(x) + (3*x^2 + 3*x - 1)*sinh(x))/2. - Stefano Spezia, Aug 19 2022
Sum_{n>=1} 1/a(n) = Pi^2/36 + tan(Pi/(2*sqrt(3)))*Pi/(2*sqrt(3)). - Amiram Eldar, Jan 16 2023
Extensions
New name and more terms a(41)-a(50) from Omar E. Pol, Aug 20 2011
Comments