A032742 a(1) = 1; for n > 1, a(n) = largest proper divisor of n (that is, for n>1, maximum divisor d of n in range 1 <= d < n).
1, 1, 1, 2, 1, 3, 1, 4, 3, 5, 1, 6, 1, 7, 5, 8, 1, 9, 1, 10, 7, 11, 1, 12, 5, 13, 9, 14, 1, 15, 1, 16, 11, 17, 7, 18, 1, 19, 13, 20, 1, 21, 1, 22, 15, 23, 1, 24, 7, 25, 17, 26, 1, 27, 11, 28, 19, 29, 1, 30, 1, 31, 21, 32, 13, 33, 1, 34, 23, 35, 1, 36, 1, 37, 25, 38, 11, 39, 1, 40
Offset: 1
Links
- Rémi Eismann, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
- Moosa Nasir, Slopes.
- Eric Weisstein's World of Mathematics, Proper Divisor.
Crossrefs
Programs
-
Haskell
a032742 n = n `div` a020639 n -- Reinhard Zumkeller, Oct 03 2012
-
Maple
A032742 :=proc(n) option remember; if n = 1 then 1; else numtheory[divisors](n) minus {n} ; max(op(%)) ; end if; end proc: # R. J. Mathar, Jun 13 2011 1, seq(n/min(numtheory:-factorset(n)), n=2..1000); # Robert Israel, Dec 18 2014
-
Mathematica
f[n_] := If[n == 1, 1, Divisors[n][[-2]]]; Table[f[n], {n, 100}] (* Vladimir Joseph Stephan Orlovsky, Mar 03 2010 *) Join[{1},Divisors[#][[-2]]&/@Range[2,80]] (* Harvey P. Dale, Nov 29 2011 *) a[n_] := n/FactorInteger[n][[1, 1]]; Array[a, 100] (* Amiram Eldar, Nov 26 2020 *) Table[Which[n==1,1,PrimeQ[n],1,True,Divisors[n][[-2]]],{n,80}] (* Harvey P. Dale, Feb 02 2022 *)
-
PARI
a(n)=if(n==1,1,n/factor(n)[1,1]) \\ Charles R Greathouse IV, Jun 15 2011
-
Python
from sympy import factorint def a(n): return 1 if n == 1 else n//min(factorint(n)) print([a(n) for n in range(1, 81)]) # Michael S. Branicky, Jun 21 2022
-
Scheme
(define (A032742 n) (/ n (A020639 n))) ;; Antti Karttunen, Dec 18 2014
Formula
a(n) = n / A020639(n).
Other identities and observations:
A054576(n) = a(a(n)); A117358(n) = a(a(a(n))) = a(A054576(n)); a(A008578(n)) = 1, a(A002808(n)) > 1. - Reinhard Zumkeller, Mar 10 2006
a(m)*a(n) < a(m*n) for m and n > 1. - Reinhard Zumkeller, Apr 11 2008
a(m*n) = max(m*a(n), n*a(m)). - Robert Israel, Dec 18 2014
From Antti Karttunen, Mar 31 2018: (Start)
a(n) = n - A060681(n).
For n > 1, a(n) = A003961^(r)(A246277(n)), where r = A055396(n)-1 and A003961^(r)(n) stands for shifting the prime factorization of n by r positions towards larger primes.
(End)
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Sum_{k>=1} A005867(k-1)/(prime(k)*A002110(k)) = 0.165049... . - Amiram Eldar, Nov 19 2022
Extensions
Definition clarified by N. J. A. Sloane, Dec 26 2022
Comments